Recent Studies on Natural Attenuation at Petroleum UST Sites and Implications on Risk-Based Decision Making

Remediation Technologies Symposium 2019
Banff Springs, Alberta
October 17, 2019

Matthew Lahvis
Function Lead Soil & Groundwater R&D
Shell Global Solutions (US) Inc.
Definitions and Cautionary Note

The companies in which Royal Dutch Shell plc directly and indirectly owns investments are separate legal entities. In this presentation “Shell”, “Shell group” and “Royal Dutch Shell” are sometimes used for convenience where references are made to Royal Dutch Shell plc and its subsidiaries in general. Likewise, the words “we”, “us” and “our” are also used to refer to Royal Dutch Shell plc and subsidiaries in general or to those who work for them. These terms are also used where no useful purpose is served by identifying the particular entity or entities. “Subsidiaries”, “Shell subsidiaries” and “Shell companies” as used in this presentation refer to entities over which Royal Dutch Shell plc either directly or indirectly has control. Entities and unincorporated arrangements over which Shell has joint control are generally referred to as “joint ventures” and “joint operations”, respectively. Entities over which Shell has significant influence but neither control nor joint control are referred to as “associates”. The term “Shell interest” is used for convenience to indicate the direct and/or indirect ownership interest held by Shell in an entity or unincorporated joint arrangement, after exclusion of all third-party interest.

This presentation contains forward-looking statements (within the meaning of the U.S. Private Securities Litigation Reform Act of 1995) concerning the financial condition, results of operations and businesses of Royal Dutch Shell. All statements other than statements of historical fact are, or may be deemed to be, forward-looking statements. Forward-looking statements are statements of future expectations that are based on management’s current expectations and assumptions and involve known and unknown risks and uncertainties that could cause actual results, performance or events to differ materially from those expressed or implied in these statements. Forward-looking statements include, among other things, statements concerning the potential exposure of Royal Dutch Shell to market risks and statements expressing management’s expectations, beliefs, estimates, forecasts, projections and assumptions. These forward-looking statements are identified by their use of terms and phrases such as “aim”, “ambition”, “anticipate”, “believe”, “could”, “estimate”, “expect”, “goals”, “intend”, “may”, “objectives”, “outlook”, “plan”, “probably”, “project”, “risks”, “schedule”, “seek”, “should”, “target”, “will” and similar terms and phrases. There are a number of factors that could affect the future operations of Royal Dutch Shell and could cause those results to differ materially from those expressed in the forward-looking statements included in this presentation, including (without limitation): (a) price fluctuations in crude oil and natural gas; (b) changes in demand for Shell’s products; (c) currency fluctuations; (d) drilling and production results; (e) reserves estimates; (f) loss of market share and industry competition; (g) environmental and physical risks; (h) risks associated with the identification of suitable potential acquisition properties and targets, and successful negotiation and completion of such transactions; (i) the risk of doing business in developing countries and countries subject to international sanctions; (j) legislative, fiscal and regulatory developments including regulatory measures addressing climate change; (k) economic and financial market conditions in various countries and regions; (l) political risks, including the risks of expropriation and renegotiation of the terms of contracts with governmental entities, delays or advancements in the approval of projects and delays in the reimbursement for shared costs; and (m) changes in trading conditions. No assurance is provided that future dividend payments will match or exceed previous dividend payments. All forward-looking statements contained in this presentation are expressed qualitatively in their entirety by the cautionary statements contained or referred to in this section. Readers should not place undue reliance on forward-looking statements. Additional risk factors that may affect future results are contained in Royal Dutch Shell’s 20-F for the year ended December 31, 2018 (available at www.shell.com/investor and www.sec.gov). These risk factors also equally qualify all forward-looking statements contained in this presentation and should be considered by the reader. Each forward-looking statement speaks only as of the date of this presentation, October 17, 2019. Neither Royal Dutch Shell plc nor any of its subsidiaries undertake any obligation to publicly update or revise any forward-looking statement as a result of new information, future events or other information. In light of these risks, results could differ materially from those stated, implied or inferred from the forward-looking statements contained in this presentation.

We may have used certain terms, such as resources, in this presentation that United States Securities and Exchange Commission (SEC) strictly prohibits us from including in our filings with the SEC. U.S. Investors are urged to consider closely the disclosure in our Form 20-F, File No 1-32575, available on the SEC website www.sec.gov.
Acknowledgements

Charles Newell, Poonam Kulkarni, Tom McHugh
GSI Environmental Inc, Houston, Texas

Kirk O’Reilly, Andrew Dienes
Exponent, Bellevue, Washington
Issue: Lack of Confidence in Natural Attenuation Affecting Risk-Based Decision Making

- residual LNAPL difficult to remediate
- natural attenuation occurring, but takes time
- low UST case closure rate (sites being monitored for extended time period till MCLs are reached)
- limited consideration of probable future groundwater use
Understanding the Science: Effects of LNAPL Recovery on Source Mass

- significant source mass often remains in place after active remediation (source for groundwater and vapor impacts)
- further risk-based corrective action requires understanding of:
 - natural attenuation (baseline condition)
 - what works, what doesn’t with respect to active remediation
GW Attenuation Studies (COPCs): “BIG DATA”

- 12,000+ sites w/ electronic data
- 2 million GW samples; 157,000 MWs
- electronic data from 2001 and after

CALIFORNIA GEOTRACKER GW DATABASE

GOALS

- attenuation rates for key COPCs
 - how do they compare?
 - which COPCs drive risk?
 - have they changed over time?
- key factors that affect attenuation rates
 - LNAPL recovery
 - types of remediation technologies

KEY POINT

- database provides unique opportunity to understand COPC concentration trends and factors that affect

From McHugh et al., 2013
Approach: Source Zone Attenuation Rates

Process the Data

- sites w/at least 5 yrs of concentration data
- extract maximum site-wide concentrations over six-month periods
 - 1000s of sites w/ GW data
 - 2,253 sites w/ residual LNAPL
 - 972 sites w/ mobile (or migrating) LNAPL
- calculate the source attenuation rate k_{source}
- assess effects on k_{source}

\[C = C_0 e^{-(k_{source} t)} \]
KEY POINT

- GW quality has greatly improved over time for key petroleum COPCs at UST sites as a result of a) mitigation/remediation, b) improved leak prevention and detection, and c) natural attenuation

From McHugh et al. (written communication – 2019)
KEY POINT

- Median half-lives range from 1-2 yrs, implying median source area concentrations decreasing by 50% every 1-2 yrs.

- Median attenuation rates for DRO (F2) slightly less than gasoline constituents (benzene and MTBE) and GRO (F1), again, consistent with lesser volatility and solubility (bioavailability).
Relative Concentration Trends For Key COPCs

MAXIMUM SITE CONCENTRATION OVER TIME
(877 SITES WITH 14+ YEARS OF MONITORING)

KEY POINT
- relative attenuation of BTEX is generally greater than N because of lower relative volatility and solubility (i.e., bioavailability)

From McHugh et al. (written communication – 2019)
Relative Attenuation Rates For Key COPCs

KEY POINT
- Relative attenuation rates of BTEX and N are consistent with those observed at a well-studied (USGS) crude oil release site undergoing long-term natural attenuation.
- Relative rates of natural attenuation of BTEX, N are relatively independent of fuel type, release volume.

From: McHugh et al. (written communication – 2019)
Plume Lengths
* greatest distance between well w/ highest COPC concentration and well w/ COPC concentration > ND

KEY POINT
- Plume lengths are similar for the 4 COPCs
- Data suggest no need to manage petroleum UST sites differently based on TPH

From O’Reilly (written communication, 2019)
Plume Lengths: Published Studies @ Multiple Sites

From Connor et al. (2015)

<table>
<thead>
<tr>
<th></th>
<th>Results for MTBE, Benzene, and TBA Plumes at UST Sites</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 µg/L</td>
<td></td>
</tr>
<tr>
<td>MEDIAN PLUME LENGTHS</td>
<td></td>
</tr>
<tr>
<td>391 sites</td>
<td>MTBE 165 feet</td>
</tr>
<tr>
<td>826 sites</td>
<td>Benzene 140 feet</td>
</tr>
<tr>
<td>108 sites</td>
<td>TBA 190 feet</td>
</tr>
<tr>
<td>90th PERCENTILE PLUME LENGTHS</td>
<td></td>
</tr>
<tr>
<td>336 sites</td>
<td>MTBE 400 feet</td>
</tr>
<tr>
<td>772 sites</td>
<td>Benzene 345 feet</td>
</tr>
<tr>
<td>108 sites</td>
<td>TBA 420 feet</td>
</tr>
</tbody>
</table>

KEY POINT

- median plume lengths for MTBE and BTEX are generally similar - multiple different sites
- median and 90th percentile plume lengths generally similar for various COPCSs (benzene, MTBE, and TBA)

"...significant reductions in benzene concentrations can occur with time, even without active Remediation"

"BTEX plumes are significantly smaller than the other chemical classes"

"We found no difference in plume length between different remediation techniques and sites with no remedial action"

"...soil removal would not significantly affect groundwater remediation requirements"
Plume Stability

From O'Reilly et al. (written communication – 2019)

KEY POINT
- COPC plumes are generally stable or decreasing after monitoring is initiated.

Figure 17-1: Groundwater Plume Classes for Low-Threat UST Case Closure Policy

KEY POINT
- Science used to support rational, risk-based policy in California for managing long-term petroleum hydrocarbon impacts at UST sites (closing sites in long-term monitoring)

Notes:
- **B**: Benzene
- **FP**: Free Product
- **M**: Methyl tert butyl ether
- **Stable/decr**: Stable or decreasing in areal extent
- **WQO**: Water Quality Objective

Figure is not to scale
Closure success...

From: California State Water Resources Control Board (2018)

For additional information see:
https://www.waterboards.ca.gov/water_issues/programs/ust

KEY POINT

- # of sites being monitored has decreased by 70% since 2008
- higher concentration sites retained (consistent with intent of low threat policy)
- great example of developing practical regulations in partnership (regulators, water districts, NGOs, industry, tank owners/operators, environmental consultants)
Closure success...

- Brownfields and Land Revitalization initiatives
 - economic growth
 - job creation
 - revitalize communities
Higher Dissolved-Phase Concentrations At Sites With Mobile LNAPL

KEY POINT

- mobile LNAPL sites have higher maximum dissolved concentrations than sites with residual LNAPL

Source: Kulkarni et al., 2015

<table>
<thead>
<tr>
<th>Compound</th>
<th>Non-LNAPL Sites (n = 2,253)</th>
<th>LNAPL Sites (n = 972)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MTBE</td>
<td>2,300 mg/L</td>
<td>5,400 mg/L</td>
</tr>
<tr>
<td>Benzene</td>
<td>14,000 mg/L</td>
<td>12,000 mg/L</td>
</tr>
</tbody>
</table>

Median Historical Max. Concentration (μg/L)
Slower Attenuation Rates At Sites with Mobile LNAPL

Source: Kulkarni et al., 2015

KEY POINT

• mobile LNAPL sites have slower attenuation rates than sites with residual LNAPL
Attenuation Rate vs. Groundwater Concentration

KEY POINT

- Difference in attenuation rates was not related to difference in maximum concentrations at the two types of sites

Source: Kulkarni et al., 2015
Attenuation Rate vs. LNAPL Thickness (Release Volume)

Total LNAPL Thickness = sum of maximum LNAPL thickness in each well

KEY POINT
• factors other than release volume and site geology affect attenuation rates

Source: Kulkarni et al., 2015
Impact of LNAPL Recovery at Sites with Mobile LNAPL Over 10 Years

<table>
<thead>
<tr>
<th>Remedy Type</th>
<th>Median Source Attenuation Rates (yr⁻¹)</th>
<th>Median Concentration Reduction (%)</th>
<th>Median Reduction in LNAPL Thickness (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Benzene</td>
<td>Benzene</td>
<td></td>
</tr>
<tr>
<td>LNAPL Recovery (n=327)</td>
<td>Slower 0.09</td>
<td>Lower 75%</td>
<td>87%</td>
</tr>
<tr>
<td>Non - NAPL Recovery (n=444)</td>
<td>Faster 0.19</td>
<td>Higher 86%</td>
<td>91%</td>
</tr>
</tbody>
</table>

Source: Kulkarni et al., 2015

KEY POINT

• LNAPL recovery may have little impact on reducing concentrations, or increasing source attenuation rates
Effect of Remediation Technology on Source Attenuation Rate

KEY POINT
- Air-based remediation technologies (and chemical oxidation) had greatest effect on enhancing attenuation rate for benzene.

What about NA sites only?

<table>
<thead>
<tr>
<th>Technology</th>
<th>Median Attenuation Rate (yr⁻¹)</th>
<th>Source: McHugh et al., 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>SVE</td>
<td></td>
<td>(*) Statistically Significant (p<0.05)</td>
</tr>
<tr>
<td>Air Sparging</td>
<td></td>
<td>(***) Statistically Significant (p<0.01)</td>
</tr>
<tr>
<td>Pump and Treat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dual-Phase Extraction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>In-Situ Enhanced Biodegradation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemical Oxidation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soil Excavation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Technologies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LNAPL Recovery</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- n Sites with Only Technology
- n Sites with Technology and Some Other Technology
- n Sites without Technology
Key Take Aways

- Hydrocarbon generally remains despite best efforts to recover/remediate.

- Must rely on natural attenuation to reach risk-based clean-up goals (e.g., MCLs) within a reasonable timeframe.

- Attenuation rates of petroleum hydrocarbons are well documented:
 - Rates relatively consistent for wide-range of key COPCs.
 - Rates significant (most plumes are stable or decreasing).
 - Few petroleum hydrocarbon plumes extend beyond 500 ft.
 - Rates are not necessarily significantly increased by hydraulic LNAPL recovery.

- Science can be used to underpin regulations that prevent risks to human health and the environment, focus limited resources on sites that matter most, and give back to the community through redevelopment.

