The InSitu Remediation of PFAS-Impacted Groundwater Using Colloidal Activated Carbon

R. McGregor
InSitu Remediation Services

RemTech 2018
Background

• Per & Polyfluoroalkyl Substances (PFAS)
• Emerging Compounds of Concern
 • Perfluorooctane Sulfonate (PFOS)
 • Perfluorooctanoic acid (PFOA)
• Thousands of compounds
• Shown to bioaccumulate
• Analytical challenges
• Health Advisory Levels 10s of ng/L (ppt)
• Fate & transport not well understood
 • A. Weber et al. (ES&T, 2017)
 • Anderson et al. (Chemosphere, 2016)
 • Xiao et al. (Water Research, 2015)
Background

• Perfluorinated Compounds
 • 6 million Americans exposed

• Reagents for aqueous film forming foam (AFFF)

• Coating Agents

• Repellants for fabrics

U.S. EPA
Background

• InSitu Treatment
 • Limited demonstrated options
 • Resistant to chemical oxidation due to C-F bond
 • Low remedial concentrations required
 • Sensitive to back & matrix diffusion

• Lab or Pilot Approaches
 • Chemox
 • Nano Pd/ZVI
 • Activated Persulfate
 • B12
 • Activated Carbon

Park et al., 2015
Background

- **Activated Carbon**
 - Well demonstrated for above ground treatment
 - Limited data on insitu performance
- Fate & transport not well understood
- Injectability
- Distribution
- Lifespan
 - Capacity differs for various PFAS
 - Competition for sites
 - Destruction vs unavailability
- Back diffusion

Source: Xiao et al., 2017
Background

- Particle Size
 - In general the smaller the particle size the greater the capacity

Source: Xiao et al., 2017
Study Site

• Petroleum Hydrocarbon Spill
 • Source excavated
 • Residue PHCs in soil and groundwater
 • BTEX < 300 ug/L
 • F1 < 2,000 ug/L
 • F2 < 3,500 ug/L
 • Mention of site being used as a fire fighting training site and old building used for fabric coating
 • Grabbed groundwater samples for PFOA and PFOS analyses
 • Detected!
 • PFOS up to 1,450 ng/L
 • PFOA up to 3,260 ng/L
Study Site

- PFOS
- PFOA

Suspected Source Area

Groundwater Flow
Study Site

Geology
- Glacial-fluvial deposit
- Sand to silty sand
- Sand lens (less than 0.02 metres thick)

Hydrogeology
- Shallow water table (~1 mbgs)
- Unconfined
- $K \sim 2.6 \text{ m/day}$
- $i \sim 0.06$
- $V \sim 0.8 \text{ m/day}$
- Effective porosity ~ 0.2
Study Site

Geochemistry

- Carbonate-bearing aquifer
 - Alkalinity ~270-400 mg/L as CaCO3
- Reducing
 - Nitrate and oxygen depleted
 - Iron-sulfate reducing
- High chloride concentration
 - ~180 mg/L Cl
 - ~140 mg/L Na

Source

- Excavated
- Calculated mass flux of ~1.8 g/year (G. Carey)

Courtesy: G. Carey
Remedial Review

- Why liquid activated carbon?
 - ~30 sites in Canada
 - Excellent injection “properties”
 - Viscosity and density of water
 - Colloidal (1-2 microns)
 - Surface area ~5,500 m²
 - Potentially quick
 - One time application
 - Less disruption
- Cost
 - ~$75,000 CDN
Injection Methodology

- Based on Pore Volume
 - One event
- Direct Push
- Geology Specific Tools
- Multiple Locations
- Multiple Intervals
- Low Pressure
 - <25 psi
- Low Volume
 - ~100 to 200 litres/location
Injection Methodology

- Both Plumes - combination of adsorption-aerobic bio
 - 725 kg of concentrated liquid activated carbon
 - 440 kg of oxygen-releasing material
 - 7,800 litres of water
 - 50 locations

Courtesy: G. Carey
Injection Methodology

- PFAS Plume - combination of adsorption-aerobic bio
 - 290 kg of concentrated liquid activated carbon
 - 176 kg of oxygen-releasing material
 - 3,120 litres of water
 - 20 locations

Courtesy: G. Carey
Results

Evaluation Criteria

• Budget
 • Timing and Budget

• Distribution
 • Target Zone
 • Area of Influence

• Short term results
 • Up to 1 year

• Long term results
 • Post 1 year
Results

• Budget
 • 50 locations
 • 3 days
 • On time
• Minimal daylighting
 • Injection ~ 0.8 m below grade
 • Less than 8 litres of solution total
• Budget
 • $75,000 CDN (~$60,000 US)
 • On budget
Results

Distribution

- Observation in wells during injection
- Cores
 - Radius of influence
 - Target zone
 - Overall coverage

ROI Cores

Coverage Cores
Results

Distribution

• Overall Coverage
Results

Distribution

• Radius of Influence

Injection Pt
Background

SEM Photography Sand Grain

SEM Photography Sand Grain with PlumeStop

Courtesy: Regenesis
Results

Short and Long Term Chemistry

• PFOS & PFOA
 • 3 months
 • 6 months
 • 9 months
 • 12 months
 • 18 months
 • 21 months

• Other PFAS Compounds
 • 18 & 21 months
 • PFBS, PFHxS, PFDS, PFOSA, PFBA, PFPeA, PFHxA, PFHpA, PFNA, PFDA, PFUnA & PFDa

• Detailed Inorganic Parameters
 • 18 months

• Next Generation Sequencing
 • 18 months
Results

• Short Term Results
 • BTEX and PHC results
 • 3 months
 • Non Detect for BTEX, F1 & F2
 • 12 months
 • Detections for BTEX and F1 but well below the Standards

• PFOS and PFOA
 • 3, 6, 9 & 12 months
 • Non Detect

Source: G. Carey, 2017
Results - One Year

<table>
<thead>
<tr>
<th>Sample</th>
<th>PFOS Pre</th>
<th>PFOA Pre</th>
<th>PFOS Post</th>
<th>PFOA Post</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW1</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
</tr>
<tr>
<td>MW2</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
</tr>
<tr>
<td>MW4</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
</tr>
<tr>
<td>MW5</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
</tr>
<tr>
<td>MW8</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
</tr>
<tr>
<td>MW11</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
<td>< 20 ppt</td>
</tr>
</tbody>
</table>

Courtesy: J. Birnstingl
Results

Long Term Results

- **BTEX and PHC results**
 - 18 & 21 months
 - Detections for BTEX and F1 but well below the Standards

- **PFOS and PFOA**
 - 18 & 21 months
 - PFOA - ND
 - PFOS - 40 ng/L (18 months)

- **Other PFAS**
 - All ND except PFUnA
 - 20 ng/L (18 months)
Preliminary Conclusions

- Liquid activated carbon
 - Effective over the short term for removal of PFOS, PFOA and other PFAS
 - Adsorbed, not destroyed
- Long term monitoring required for:
 - Partitioning
 - Does it stay on LAC?
 - Modelling (Dr Carey) of longterm behaviour
 - Biodegradation PFAS on/near LAC
 - Does it degrade?
PFAS Remediation Research Group

Academic Partners

UNIVERSITY OF TORONTO

Carleton UNIVERSITY

Industrial Partners

Porewater Solutions
Expertise • Experience • Innovation

INSITU