THE HORIZONTAL REACTIVE MEDIA TREATMENT WELL (HRX WELL™) – DEMONSTRATION OF A NEW TECHNOLOGY FOR PASSIVE IN-SITU REMEDIATION

Craig Divine, Jeff McDonough, Jesse Wright, Jack Wang, (Arcadis)
Michelle Crimi (Clarkson University)
J.F. Devlin (University of Kansas)

October 2018
RemTech 2018, Banff, Alberta
HRX Well Description

The HRX Well (Patent US8596351B2) is a large-diameter horizontal well installed along the groundwater flowpath that is filled with reactive media.

- Passive in-situ treatment
- Many solid-phase reactive media options
- Efficient use of reactive media
- Not limited to high-permeability aquifers
- Can be applied in relatively deep settings
- Limited above-ground footprint
- No ongoing energy or O&M requirements
- Pumping can enhance treatment zone
Potential Reactive Media and Contaminants

<table>
<thead>
<tr>
<th>Reactive Media</th>
<th>Target Groundwater Contaminant</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero valent iron (ZVI)</td>
<td>Chlorinated solvents (CVOCs), nitrate, perchlorate, energetics, chromium, arsenic, other metals</td>
</tr>
<tr>
<td>Bimetallics (e.g., ZVI + Pd, Pt, or Ni)</td>
<td></td>
</tr>
<tr>
<td>Granulated Activated Carbon (GAC)</td>
<td>CVOCs, PFAS, hydrocarbons, Halomethanes</td>
</tr>
<tr>
<td>Ion exchange resins</td>
<td>Brines</td>
</tr>
<tr>
<td>Biodegradable particulate organic carbon (e.g., mulch)</td>
<td>CVOCs, nitrate, perchlorate</td>
</tr>
<tr>
<td>Phosphates (e.g., apatite)</td>
<td>Lead, uranium, other metals and radionuclides</td>
</tr>
<tr>
<td>Sustained Release Oxidants (e.g., RemOxSR+ISCO)</td>
<td>CVOCs, 1,4-dioxane, hydrocarbons, polyaromatic hydrocarbons (PAHs), phenolic compounds, and energetics</td>
</tr>
<tr>
<td>Limestone, lime, magnesium oxide</td>
<td>Low pH, Acid Rock Drainage</td>
</tr>
<tr>
<td>Barium sulfate (barite)</td>
<td>Radium</td>
</tr>
<tr>
<td>Iron sulfide</td>
<td>Cr, High pH</td>
</tr>
<tr>
<td>Zeolites</td>
<td>Ammonium, radionuclides</td>
</tr>
</tbody>
</table>
Treatment Width

\[W_{\text{treatment}} = \frac{Q_w}{T_A i_A} \]

\[Q_w = K_w A_w i_w \]

- \(W_{\text{treatment}} \): HRX treatment width
- \(Q_w \): Flow in HRX well
- \(T_A \): Aquifer Transmissivity
- \(i_A \): Aquifer hydraulic gradient
- \(A_w \): x-sectional area of HRX well
- \(i_w \): Hydraulic gradient in HRX well

For passive configurations, treatment widths of 50+ feet are feasible.
Modeling

- 300 ft long, 20 ft deep, 1 ft diameter,
- Homogeneous aquifer, $K_A=2.8$ ft/day, $K_W=2,800$ ft/day
- Treatment width = ~45 ft.
Objectives (ESTCP ER-201631)

1. Full-Scale demonstration of technology to control mass discharge
2. Measure the actual performance and compare to model predictions.
3. Assess actual implementability, cost and sustainability performance
4. Develop a user tool and guidance for conceptual design and costing.
ZVI Selection and PVP Design

- No progressive losses in k over time (>1000 pore volumes in these tests)
- Connelly iron selected based on best overall performance
- Modified laboratory PVP accurately and measured seepage velocities
Tank Testing

- Validated HRX Well hydraulics
- Validated contaminant treatment with GAC and ZVI
- HRX Well ZVI performance sustained over 100+ Pore Volumes
Pilot Scale Testing

- HRX Well captured 39% of flow while representing 0.5% of test pit volume
- Verified hydraulic and reactive transport model
- Further tracer testing currently underway
Field Demonstration

Site SS003, Vandenberg Air Force Base

- Objective: significantly reduce mass discharge from the source
- $K = 1\text{–}10$ ft/day, thickness 5\text{-}10 ft, depth ~20 ft, low ambient gw flux
Field HRX Well Design

- Length: 550 ft; Depth: 20 ft; Diameter: 12-in; Reactive media: 35% ZVI (60 ft)
- Target treatment width: 56 ft, Residence time: 6-8 days
- 2 PVPs, samples, tracer testing to measure in-well velocity, flux, concentrations
Monitoring and ZVI Cartridge Designs

Monitoring cartridge (5 ft)

ZVI cartridge (10-ft)
Design Model Results

© Arcadis 2018
Field Installation (July/August 2018)
Alternatives Analysis

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Alternative #1 HRX Well</th>
<th>Alternative #2 Groundwater Extraction and Treatment System</th>
<th>Alternative #3 Funnel and Gate PRB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall protection of human health and environment</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Effectiveness and permanence</td>
<td>Moderate to High</td>
<td>Moderate</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>Reductions in toxicity, mobility, and volume through treatment</td>
<td>Moderate to High</td>
<td>Moderate</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>Implementability</td>
<td>Moderate</td>
<td>Moderate</td>
<td>Moderate</td>
</tr>
<tr>
<td>Sustainability</td>
<td>High</td>
<td>Low to Moderate</td>
<td>Moderate to High</td>
</tr>
<tr>
<td>Lifecycle Cost*</td>
<td>Low to Moderate</td>
<td>High</td>
<td>Moderate</td>
</tr>
<tr>
<td></td>
<td>$2.4-3.1M</td>
<td>$3.8-4.7M</td>
<td>$3.6-4.5M</td>
</tr>
</tbody>
</table>

*Full-scale costs assume a target treatment width of 150 ft
Closing

Future Performance Monitoring
- Groundwater monitoring
- Point Velocity Probes (PVPs)
- Tracer Testing

The HRX Well offers the following advantages
- In situ mass flux control
- Passive operation or enhanced capture zone with pumps
- Many reactive media options and therefore applicable to many contaminants
- Efficient media usage, easy change-out, can use multiple types
- Limited above-ground footprint
- No ongoing energy, water, or O&M requirements
- Favorable lifecycle cost comparison to P&T and PRB
Thank You

ESTCP
Hunter Anderson, PhD (AFCEC)
Kathleen Gerber (VAFB)
Don Eley (RWQCB)
Michael Lubrecht, Dan Ombalski (DTD)
Billy Hodge (University of Kansas)
Blossom Nzeribe Nwedo, Nageshrao Kunte
Pandurangarao, Simon Feng (Clarkson University)
Mike Kladias, Hoa Voscott, Kelly Houston (Arcadis)

Divine et al., 2018. The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In-Situ Remediation. Remediation, DOI: 10.1002/rem.21571

Divine et al., 2018. The Horizontal Reactive Media Treatment Well (HRX Well®) for Passive In-Situ Remediation. GWMR, DOI: 10.1111/gwmr.12252