Biodegradation of Sulfolane in Soil Using Aerobic Biopile Technology

Successfull Collaboration Between Academia and Industry – Breaking Open Sulfolane Remediation strategies

12-Oct-2017

Linlong Yu, University of Calgary

Ian Keir, Bonavista Energy Corporation
Outline

- Sulfolane Key Properties
- Environmental Standards
- Previous Sulfolane Presentations
- Development of Sulfolane Treatment Technology
- Aerobic Biodegradation of Sulfolane in Soil
- Lab Degradation of Sulfolane
- Pilot Demonstration-Biopiles
- Full Remediation on Sulfolane Contaminated soil
Sulfolane Key Properties

- Gas Sweetening
- Aromatics Extraction
- Textiles
- Production 18,000-36,000 tones [1]
- Soil and Groundwater contamination
- Ongoing Toxicity Studies (NTP)

- Chemically stable
- Thermally stable
- Boiling Point: 287.3 °C [2]
- Vapor Pressure @ 20°C: 1.33 pa [3]
- Water Solubility @ 20°C: 1266 g/L [3]
- Soil Adsorption:
 - $K_{oc} = 0.07$ [3]
 - K_d (montmorillonite) = 0.94 L/kg [4]
 - K_d (kaolinite) = 0.08 L/kg [4]
Environmental Standards

- Alberta
- BC
- Alaska
- Texas
- Louisiana
- California
- Michigan

Health Canada interim drinking water guideline: 0.04 mg/L.

Soil: 0.18 mg/kg
Groundwater: 0.09 mg/L

CCME: 0.8 mg/kg
0.09 mg/L

AB: 0.18 mg/kg
0.09 mg/L

Texas: 0.61 mg/kg
0.32 mg/L
Previous Sulfolane Presentations

- **EBA 2005 – Lab Scale**
 - Soil: Bio-treatability
 - Groundwater: Bio-treatability; Chemical Oxidation
- **Biogenie 2006 – Full Scale**
 - Soil: Bio-treatability
- **WorleyParsons Komex 2008 – Pilot and Full Scale**
 - Groundwater: Bio-treatability
- **Waterline 2016 – Pilot Scale**
 - Soil: Bio-treatability; Chemical Oxidation
- **Trium 2016 – Lab Scale**
 - Groundwater: Chemical Oxidation
- **Maxxam 2017 – Lab Scale**
 - Laboratory Methods
- **WorleyParsons 2017**
 - Groundwater Remedial Options Review
Development of Sulfolane Treatment Technologies

<table>
<thead>
<tr>
<th>Groundwater</th>
<th>Soil</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Oxidation – Lab and Field Pilot</td>
<td>Bioremediation – Lab Scale, Field Pilot, Full Scale</td>
</tr>
<tr>
<td>Bioremediation – Lab and Field Pilot</td>
<td>Soil Flushing & Washing – Lab Scale and Field Pilot</td>
</tr>
<tr>
<td>Carbon Adsorption – Lab and Field Pilot</td>
<td>In-Situ Chemical Oxidation (ISCO) – Lab Scale</td>
</tr>
<tr>
<td>Reverse Osmosis – Lab Scale</td>
<td>Oxygen Releasing Compounds (ORC) – Lab Scale and Field Pilot</td>
</tr>
<tr>
<td>Isotope Fractionation – Lab Scale</td>
<td></td>
</tr>
<tr>
<td>Integrated Technology-Lab scale</td>
<td></td>
</tr>
</tbody>
</table>
Aerobic Biodegradation of Sulfolane in Soil

- N, P & micronutrients
- Proper pH
- Proper temperature

\[\text{Sulfolane} + 6.5O_2 \rightarrow 4CO_2 + 3H_2O + H_2SO_4 \]

Lab Investigation:
- Treatability study
- Optimization

Pilot Demonstration:
- Evaluation
- Modification

Full Remediation:
- Modification
Lab Study: Experimental Setup

Soil Texture

<table>
<thead>
<tr>
<th>Physical properties</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sand percentage</td>
<td>8.3</td>
</tr>
<tr>
<td>Silt percentage</td>
<td>43.0</td>
</tr>
<tr>
<td>Clay percentage</td>
<td>48.6</td>
</tr>
<tr>
<td>Texture</td>
<td>Silty Clay</td>
</tr>
</tbody>
</table>

300 g of soil was loosely packed in a beaker (ø= 15 cm)

- Moisture: 18%
- Oxygen: exposed to atmosphere
- Temperature: 22 °C
- Nutrients: different conditions
- Sulfolane metabolized microorganisms were present in the contaminated soil.
- N-P amendment samples yield the best degradation results.
Pilot Study: Setup of Soil Bio-Piles

Tarp

Perforated PVC pipe

bp1 bp2 bp3 bp4 bp5 bp6

Bio-Piles
Details of Soil Piles

<table>
<thead>
<tr>
<th>Soil pile</th>
<th>Size of pile (m3)</th>
<th>Covered with Tarps</th>
<th>Nutrient Amendment</th>
<th>Aeration</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Nitrogen nutrient</td>
<td>Phosphate nutrient</td>
</tr>
<tr>
<td>bp 1</td>
<td>25</td>
<td>Yes</td>
<td>Yes</td>
<td>NO</td>
</tr>
<tr>
<td>bp 2</td>
<td>25</td>
<td>Yes</td>
<td>Yes*</td>
<td>Yes</td>
</tr>
<tr>
<td>bp 3</td>
<td>25</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>bp 4</td>
<td>25</td>
<td>Yes</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>bp 5</td>
<td>50</td>
<td>Yes</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>bp 6</td>
<td>500</td>
<td>No</td>
<td>NO</td>
<td>NO</td>
</tr>
</tbody>
</table>

* The amount of nitrogen added in bp 2 was only 1/10 of that in bp 1
Six random samples were collected from each soil pile.

- CO₂, O₂ and water moisture content were monitored.

- Temperature data was obtained from Alberta Climate Information service.
Oxygen

1 – Air, N

2 – Air, N*&P

3 – Air, N&P

4 – Air, Alfalfa

5 – Air

6 – Control
Treatment Comparison

1 – Air, N
2 – Air, N*&P
3 – Air, N&P
4 – Air, Alfalfa
5 – Air
6 – Control
Summary of Degradation Kinetics

<table>
<thead>
<tr>
<th>Soil Piles</th>
<th>BP1</th>
<th>BP2</th>
<th>BP3</th>
<th>BP4</th>
<th>BP5</th>
<th>BP6</th>
</tr>
</thead>
<tbody>
<tr>
<td>First Order</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kinetics</td>
<td>K (Day⁻¹)</td>
<td>0.09</td>
<td>0.09</td>
<td>0.17</td>
<td>0.03</td>
<td>NA</td>
</tr>
<tr>
<td></td>
<td>Half life (Day)</td>
<td>5.3</td>
<td>5.4</td>
<td>3.0</td>
<td>17.9</td>
<td>NA</td>
</tr>
<tr>
<td>Zero Order</td>
<td>Rate (mg/kg/Day)</td>
<td>24</td>
<td>26</td>
<td>42</td>
<td>17</td>
<td>NA</td>
</tr>
<tr>
<td>Kinetics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The highest zero order degradation rate observed in lab was **220 mg/kg/day**.
Remediation Program - Contaminated Site

- 8,000 m³
- 26,000 m³
- 20,000 m³
- **Former Flare Pit**
 - Sulfolane, DIPA, PHCs
 - Soil Texture
 - 23% Sand
 - 40% Silt
 - 37% Clay
 - Sulfolane [0.42 - 8170 mg/kg]
 - Average 364 mg/kg
 - Impacts 2 – 9 mbgs
Full Scale Remediation – Year 1

- Former Flare Pit
 - Excavated June & July 2016
Full Scale Remediation – Year 1

- ~8000 m3 soil placed in windrows
 - volume assessed with drone
- Per m3 of soil: 0.1 kg MAP and 0.29 kg urea
 - based on TOC and 100:5:1 - C:N:P
- Oxygen
 - blower aeration
 - mechanical aeration
Blower Aeration – Year 1
Mechanical aeration
 – July and August

Blower aeration
 – 24/7

Based on half-life from pilot: ~35 days to clean soil with 346 mg/kg of sulfolane.

81 days between excavation and confirmatory samples

2 of 44 windrows exceeded sulfolane guideline
Ongoing Remediation

26,000 m³

~8000 m³

~8000 m³

12,000 m³
- Aerobic biodegradation of sulfolane was observed both in the lab and in the field.
- The addition of nutrients and forcing aeration enhanced sulfolane degradation (Pilot).
- Supplemented with both “N” and “P” nutrient resulted the best sulfolane degradation rate, the half-life is 3 days (optimal pilot conditions)
- Mechanical and forced aeration were both successful in full scale

Linlong Yu, University of Calgary
Ian Keir, Bonavista Energy Corporation
Gopal Achari, University of Calgary
Art Giurici, Terex Environmental Group
Collin Hennel, Bonavista Energy Corporation
Thank you!

Questions?