Mitigation Measures for Redevelopment over a Former Dry Cleaner Site

Canadian Brownfield Network – Remediation Technologies Symposium - 2015

D. Grant Walsom, B.A.Sc., P.Eng., QP
Partner
XCG Consulting Limited
Agenda for Today

- The Issue
- Background
- How to Overcome
- Implementation
- Final Thoughts
- Q&A
The Issue

• How do we get from A to B in 9 months?

• Business as usual for a developer/constructor?
The Issue

• How do we get from A to B in 9 months with contaminants from a former dry-cleaner?

• Experience would say .. it is a challenge
Background

- Former Mall Property … 19xx
- Full Property Redevelopment – demolition in 200x

- Phase One Environmental Site Assessment in 2013 (to O. Reg. 153/04 Standards)
- Identified former dry-cleaner operation in Mall
 - one source: 1965 City Directory
 - Location unknown
Background
Background
Background

- Plans for Redevelopment – new stand-alone building – tenant

- Wait !!! Phase One → Former Dry-cleaner possibly in area

- Phase Two ESA in January 2015 … dry-cleaner impacts? Yes/No?
Background

• Phase Two ESA …
 − Drilling and sampling … standard methods
 − Groundwater sampling in fractured shale bedrock
 • Volatile Organic Compounds
 – Perchloroethylene (Perc, PCE)
 – Trichloroethylene (TCE)
 – Cis-1,2-dichloroethylene (c-DCE)
 – Vinyl Chloride (VC)
 • Typical residuals from historical dry-cleaning operations
Background

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Highest Concentration (µg/L)</th>
<th>Location</th>
<th>MOECC Table 3 Standard</th>
<th>Highest Concentration (µg/L)</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Dichloroethylene</td>
<td>3.5</td>
<td>MW15-11</td>
<td>17</td>
<td>3.3</td>
<td>MW15-11</td>
</tr>
<tr>
<td>cis-1,2-Dichloroethylene</td>
<td>1000</td>
<td>MW15-11</td>
<td>17</td>
<td>800</td>
<td>MW15-11</td>
</tr>
<tr>
<td>trans-1,2-Dichloroethylene</td>
<td>11</td>
<td>MW15-03</td>
<td>17</td>
<td>21</td>
<td>MW15-13</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>13000</td>
<td>MW15-03</td>
<td>17</td>
<td>15000</td>
<td>MW15-13</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>1200</td>
<td>MW15-03</td>
<td>17</td>
<td>1300</td>
<td>MW15-13</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>16</td>
<td>MW15-03</td>
<td>1.7</td>
<td>33</td>
<td>MW15-15</td>
</tr>
</tbody>
</table>
How to Overcome

• Development plans …
 • Tenant wanted location
 • Owner wants to gain long term lease

• Schedule … Fall 2015

• Issues with impacted groundwater below location

• Can it be done? How?
 • Determine the Critical Path
 • Review possible options and related costs
How to Overcome

- Two issues (Critical Path):

 A) Future Remediation once Built
 - Need for access, minimal interruption to tenants, method?

 B) Vapour Intrusion into Building
 - Health and safety of occupants, risk assessed acceptable?
How to Overcome

• Impacted Groundwater and new Building
 – Impacts at depth
 – No source/soil identified (below the building footprint)
 – Impacts within bedrock … difficult to reach, difficult to predict movement and migration
 – Excavation … not possible, past shows pump-and-treat is not a viable option
 – *In-situ chemical oxidation (ISCO)*?
How to Overcome

- Risk Assessment calculations …
- Possible issues with vapour intrusion \((c\text{-DCE}, \text{PCE} \text{and} \text{TCE})\)
- RMM increases highest allowable possible concentration by factor of 100

<table>
<thead>
<tr>
<th>Contaminant of Concern (COC)</th>
<th>RME Concentration</th>
<th>Groundwater Discharge to Surface Water</th>
<th>% Chemical Solubility Limit</th>
<th>Groundwater to Indoor Air (without RMM)</th>
<th>Groundwater to Indoor Air (with RMM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,2-cis-Dichloroethylene</td>
<td>612</td>
<td>770,000</td>
<td>1,800,000</td>
<td>610</td>
<td>51000</td>
</tr>
<tr>
<td>1,2-trans-Dichloroethylene</td>
<td>13.2</td>
<td>1,200,000</td>
<td>1,800,000</td>
<td>610</td>
<td>51000</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>15,600</td>
<td>46,000</td>
<td>100,000</td>
<td>810</td>
<td>51000</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>1,440</td>
<td>1,200,000</td>
<td>640,000</td>
<td>210</td>
<td>21000</td>
</tr>
<tr>
<td>Vinyl Chloride</td>
<td>19.2</td>
<td>2,000,000</td>
<td>4,400,000</td>
<td>51</td>
<td>51000</td>
</tr>
</tbody>
</table>

Notes:
- All concentrations are in \(\mu g/L\).
- \(\text{RME} = \text{Reasonable Maximum Estimate} (\text{maximum detected concentration in groundwater multiplied by 1.2})\)
- Shaded values indicate that the maximum detected concentration is greater than the site specific criterion.
- Property Specific Standards derived assuming non-residential use and RMM consisting of a SVE system with passive venting.
How to Overcome

• Determined that Vapour Intrusion may be an issue

• Team with Vapour Barrier Professionals
 − Terrafix … detailed design
 − Work with Development Team – Constructor

• Application/Installation of vapour collection system and Liquid Boot® impermeable barrier
Implementation

- *In-situ* chemical oxidation (ISCO)
 - Recall that new building
 - minimize tenant disruption
 - drains constructed to provide future access
Implementation

Diagram showing the implementation of a drainage system with layers of native backfill, washed stone, and filter cloth to prevent washdown/clog. The diagram also includes a cross-section view of the fractured shale and silty clay till.
Implementation

• Design system to work with building construction
Implementation

Passive SVE and Liquid Boot® Vapour Barrier Application
Implementation

↑ Testing Indoor Air
Testing Sub-slab Vapour → Sub-slab Vent
Implementation

• Tested indoor air quality → Release to Tenant

• Summa Canisters

• Results show no Concentrations of COCs (c-DCE, PCE and TCE)

• Outdoor Air and Sub-slab – Detections

• Now … focus on groundwater remediation
Final Thoughts

- Contaminants … Redevelopment (Brownfields)
 - Doesn’t have to be an impediment to progress

- Apply new technologies and products, methods
 - i.e. Liquid Boot®, Vapour Collection, MGRA tools

- Planning and Communications
 - Early stages, co-operative teamwork, knowledge
Final Thoughts

• Contributing Factors to Success
 - Stream-lined Process
 - Early Involvement … Planning
 - no Detailed Regulatory Approvals needed (timing)
 - Trusted Network of Professionals – co-operation
 - Added Cost to Development minimized
 - Timeframe met … actually early
 - Big Picture vision … know where needed to be
Q&A

Thank you

www.xcg.com

www.canadianbrownfieldsnetwork.ca