Toluene in Peatlands and Wetlands

Mary Mayes and Sheila Luther
October 2015
Overview

- Peatland and wetland characteristics
- Reason for studies
- Sources of petrogenic and biogenic toluene in the environment
- Proposed forensic approach
- Case studies
- Next steps and conclusions
Peatlands and Wetlands

• Highly saturated (> 75% moisture)
• High in organic matter and biogenic hydrocarbons are common
• Sensitive ecosystem
 – Peat-forming wetlands can take up to 10,000 years to form, so reducing the disturbance in these areas is important.
 – Cost of remediation high, both financially and environmentally.
Why did Matrix do these studies?

- Toluene measured at concentrations greater than guidelines in soil and water from peatlands and wetlands
- Areas of potential impact extended off-lease into undisturbed areas
Literature Search - Sources of Toluene

Petrogenic
- Deep subsurface
 - Petroleum generation

Biogenic
- Surface and near-surface
 - Plant growth (atmosphere)
 - Microbial metabolism (hydrosphere)

Pyrogenic
- Thermal
 - Combustion of organic matter
- Ambient
 - Combustion of fuels from urban areas
Literature Search - Sources of Biogenic Toluene

Plant Growth

- Toluene emitted to atmosphere by plants under stress
- New England study demonstrates that summer pattern of atmospheric toluene does not follow benzene
 - Biogenic toluene up to 7% of total toluene measured in air

Microbial Metabolism

- A bacterium isolated from anoxic lake waters produces toluene from phenyl precursor
- Biogenic toluene documented in sludge bioreactor
Routine Analytical Approach

• Analysis of BTEX, F1 using GC/MS in selective ion mode

• Analysis of F2 to F4 PHCs using GC/FID
 – Method also extracts biogenic organic compounds (BOCs)
 – Soil extract subjected to silica gel clean-up to remove contribution from biogenic hydrocarbons present in organic soils
New Approach Needed

- Contacted lab:
 - Was there a way to determine if the toluene measured in samples is biogenic or petrogenic?
 - Could they come up with an analytical approach to solve the problem?
Forensic Approaches

• Forensic approaches to date
 – most forensic approaches look only at extractable hydrocarbons

• Forensic approach taken for this work
 – In conjunction with an extractable hydrocarbon evaluation, applied a forensic approach looking at the volatile organic carbon (VOC) fraction
 – C13:C12 isotope characterization
Determination of “True Biogenic” Samples - F3 Fraction

Obvious unresolved complex mixture (UCM) present

Largest n-alkane within C13-C18

Elevated sulphur

C10-C19 alkanes with Carbon Preference Index (CPI) ~1 or C19-C32 alkanes with CPI ~1

All false?

One or more are true?

True Biogenic

Yes

Petrogenic Impact

Yes
Decision Process for Biogenic F3 Encountered in Organic Soil

Pre-screening requires chromatogram interpretation expertise

Pre-screening

Tier 1 Evaluation

Does the GC-FID pattern in the peat sample match the GC-FID pattern(s) in the contamination source and/or background soil?

Yes

No

Exclude sample from evaluation

Do the F2 and/or F4 concentrations in the soil sample exceed soil standards?

Yes

Management required

No

Does the contamination source have an F2:F3b ratio of ≥0.10?

Yes

Do not proceed with evaluation

No

Excluding sample from evaluation

Tier 2 Evaluation

Does the F3 concentration in the soil sample exceed the soil standard?

Yes

Management required

No

Does the F2:F3b ratio in the soil sample exceed 0.10?

Yes

Management not required

No

Does the soil sample biomarker and/or PAH analysis indicate PHC presence?

Yes

Management required

No

Management not required

Adapted from Kelly-Hooper et al. 2013

Decision Process for Biogenic F3 Encountered in Organic Soil
Proposed Decision Process for Biogenic Toluene

1. Petrogenic Impact
 - Process indicates petrogenic?
 - True
 - Petrogenic markers present?
 - True
 - Matches contaminated source?
 - True
 - Isotopic carbon δC13 analysis
 - Matches biogenic material?
 - True
 - Conclusions need to be consistent with field observations
 - Matches biogenic organic compounds (BOCs) present?
 - True
 - Biogenic markers absent or trace?
 - True
 - True Biogenic
 - For selected samples and only if required for burden of proof
 - True
 - Harris and Bright (2006) and/or Kelly Hooper et al. (2013) processes
 - If F2 to F4 exceedances

2. Process indicates biogenic?
 - True
 - Requires specialized testing lab services
Carbon Isotopes

• Isotopes: atoms of the same element with different amount of neutrons, but equal number of protons in their nuclei

• Carbon isotopes include:
 – C12 – stable and predominant
 – C13 – stable
 – C14 – radioisotope

• The approximate ratio of C13 to C12 is 1:99
Carbon Isotope Analysis

• Analysis of stable isotopes for specific compounds is done by Isotope Ratio, Mass Spectrometer (IRMS)—known as Compound Specific Isotope Analysis (CSIA)

• Results expressed relative to a benchmark standard of C13

\[\delta^{13}\text{C} = \left(\frac{R_{\text{sample}}}{R_{\text{standard}}} - 1 \right) \times 1000 \text{ expressed as } \% \]

or per mil, and

\[R = \frac{^{13}\text{C}}{^{12}\text{C}} \]
Case Study Applications

• Selected sites that had the following:
 – Toluene in organic soils from remedial excavations
 – Toluene measured in soil and surface water from peatlands and wetlands from undisturbed areas

• In collaboration with local laboratories, tested analytical process to distinguish between petrogenic and biogenic toluene
 – Case Study 1 – Peatland
 – Case Study 2 – Boreal Forest Wetlands
Case Study 1: Assessment, delineation and remediation of hydrocarbon impacts within peatlands at an abandoned well site
West – East Cross Section

- Clay Pad
- Silty Clay
- Organic
- Weathered Sandstone

Elevation (masl)

Distance (m)
Soil Quality Results

Toluene, LEPH, HEPH (Background)

Xylenes, VPH, LEPH,

Benzene, Toluene, LEPH, HEPH

Benzene, Toluene

Matrix Solutions Inc.
Soil Quality Results

Contaminants of concern
- benzene
- toluene
- LEPH (C_{10}-C_{19})
- HEPH (C_{19}-C_{32}+)

- Toluene concentration range 1 to 22.8 mg/kg

Extent of impact large if lab results were used as received (no interpretation)
Soil Quality Results

Contaminants of concern
- benzene
- toluene
- LEPH ($C_{10}-C_{19}$)
- HEPH ($C_{19}-C_{32+}$)

- Toluene concentration range 1 to 22.8 mg/kg

Extent of impact large if lab results were used as received (no interpretation)

Parameters Exceeding Regulatory Standards

- Benzene
- HEPH ($C_{19}-C_{32}$)
- Toluene
- LEPH ($C_{10}-C_{19}$)
- Analyzed - No Exceedance
Soil Quality Results

Contaminant of concern
- benzene

Extent of impact much smaller

- Minimizes disturbance to sensitive undisturbed peat land

Parameters Exceeding Regulatory Standards
- Benzene
- Analyzed - No Exceedance
VOC scan – Petrogenic Markers

- m, p-xylenes
- C3-benzenes
- ethyl toluenes
- other aromatic hydrocarbons
VOC Biogenic Markers

Toluene major VOC detected
VOC Biogenic Markers

VOC Scans – Example Biogenic Markers
- camphene
- pinene
- carene
Case Study 1 – Carbon Isotopes

\[\delta C_{13} \text{ toluene signature in petrogenic source range from -22 to -30‰} \]

\[\delta C_{13} \text{ of Refined Gasoline or Crude} \]

\[\delta C_{13} \text{ of Peatlands and Wetlands} \]

\[\delta C_{13} \text{ of Flare Pit} \]

\[\delta C_{13} \text{ of Suspected Biogenic Toluene} \]
Case Study 2: Background Wetlands Study

• Former Gas Plant and Active Compressor Station in green zone, west Alberta
• Gas Plant (south part of site) is part of a regulatory decommissioning project as per the EPEA Approval requirements
• Decade-long soil remedial program nearly complete
• Surface water monitoring program at site (9 locations)
Site Wetlands Monitoring

• Applied *Environmental Quality Guidelines for Alberta Surface Waters* (ESRD 2014)

• Regulatory exceedances encountered:
 – Acidic pH (one location)
 – Toluene (five locations)
 – Total metals – As, Cd, Cr, Co, Cu, Pb, Ag, Zn
 – Dissolved metals – Al, Fe

• Question: Are exceedances natural or introduced?
Site Surface Water Monitoring
Background Wetland Study

- 15 sites from area sampled
- Sites classified by Alberta Wetland Inventory classification system
Background Wetland Study - Methods

• Field
 – Wetland descriptions and classification
 – In situ water chemistry (temperature, dissolved oxygen, pH, conductivity and turbidity)

• Lab Analysis
 – Routine chemistry
 – Dissolved hydrocarbons by headspace analysis
 – 5 of 15 samples had detectable toluene
 – These 5 samples - open scan purge and trap dissolved hydrocarbon analysis including full VOC scan
 – 1 of the 5 samples submitted for toluene carbon isotope analysis
Background Wetlands Study - Results
Toluene Concentrations at Site and Background Surface Water

- **Active Site Deciduous Swamp**
- **Active Site Marsh**
- **Background Deciduous Swamp**
- **Background Marsh**
- **Background Shallow Open Water**

Toluene Aquatic Life Guideline: 0.0005 mg/L

- Toluene Concentrations at Site and Background Surface Water
• VOC chromatograms indicated both compounds understood to be biogenic (BOCs) and those potentially anthropogenic (?)
 – toluene (?)
 – hexanal (BOC)
 – heptanal (BOC)
 – trimethylbenzene (?)
 – 3-octanone (BOC)
 – o/m/p-cymene (BOC)
 – eucalyptol (BOC)
VOCs Biogenic Markers

VOC Scan – Example

Biogenic Markers
- Hexanal
- O/M/P – Cymene
- Eucalyptol

spiking solution contains: nC6, benzene, toluene, ethylbenzene and xylenes

Sample + Spike

Time
Abundance
Sample
Blank

Toluene Spike
Hexanal
O/M/P - Cymene
Eucalyptol
Case Study 2 Carbon Isotope Result

δC13 toluene signature in petrogenic source range from -22 to -30‰.

- Refined Gasoline or Crude
- Flare Pit
- Petrogenic Toluene Spikes
- Peatlands and Wetlands
- Suspected Biogenic Toluene

Case Study 2 Result
Both case studies were able to establish presence of true biogenic toluene.
Challenges

- Presence of both petrogenic and biogenic markers
 - More work is required to develop approaches for addressing this
 - Need better characterization of source and background materials

- Lab analysis packages for biogenic toluene evaluations are needed
Conclusions

• If you are doing work in peatlands and wetlands, and suspect that you need to do these evaluations:
 – Need extra sample bottles
 – Always run two or more background samples in open scan mode to determine biomarkers for your site
 – In BC, you should also do silica gel clean up for extractable hydrocarbons (done automatically in Alberta)
 – If you anticipate needing additional evidence (i.e. biomarkers, carbon isotopes) – plan in advance

• Use targeted analyses for characterization - no need to analyze all samples

• Talk to the lab in advance
Thank You

Exova
Maxxam
Apache

Further information:
Sheila Luther
sluther@matrix-solutions.com
780-989-8335

Mary Mayes
marym@matrix-solutions.com
403-206-0490
References

References

