Can PHC-Impacted Fractured Limestone Be Remediated Using ISCO?

Rick McGregor & Grant Carey

RemTech 2014 Symposium
Banff, Alberta
Background

- Remediation of groundwater in fractured rock has proved problematic
 - Mackay & Cherry 1989
 - Parker et al., 2010
- Fractured Rock
 - Small fracture porosity (0.1 to 0.001%)
 - Large matrix porosity (2 to 25%)

Modified after Parker, 2013
Background

• Requires integrated approaches

Modified after Parker, 2013
Background

Modified after Kueper and Davies, 2009
Background

- Remediation of groundwater in fractured rock is governed by diffusion out of rock matrix (i.e. back diffusion)
- Rate of diffusion governed by:
 - Concentration
 - Time
 - Porosity
 - Organic carbon
 - Biological reactions
 - Redox species, etc.
Background

- How do we attempt to address remediation in fractured rock
- Integrated approach:
 - Combination of technologies
 - Reduction of mass
 - Increase biomass
Background

- How do we attempt to address remediation in fractured rock
- Integrated approach:
 - Combination of technologies
 - Reduction of mass
 - Increase biomass
 - Create a diffusion “reactive front”
Background

$T = \text{Spill}$

Groundwater Flow
Background

T = Spill

T = Injection

Groundwater Flow

C/Co
Background

T = Spill

T = Injection

T = Post - Injection

Groundwater Flow
Background

Persulphate Anion

\[S_{2}O_{8}^{2-} + 2H^{+} + 2e^{-} \rightarrow 2HSO_{4}^{-1} \]

Activation

\[SO_{4}^{\cdot-} + e^{-} \rightarrow SO_{4}^{2-} \]

Initiation

\[S_{2}O_{8}^{2-} \rightarrow SO_{4}^{\cdot-} + (SO_{4}^{\cdot-} \text{ or } SO_{4}^{2-}) \]

Propagation

\[SO_{4}^{\cdot-} + H_{2}O \rightarrow OH^{\cdot-} + HSO_{4}^{-} \]

Termination

\[SO_{4}^{\cdot-} + RH \text{ or } M \rightarrow SO_{4}^{2-} \]
Background

Persulphate Anion

$$S_2O_8^- + 2H^+ + 2e^- \rightarrow 2HSO_4^{-1}$$

Activation

$$SO_4^{\cdot-} + e^- \rightarrow SO_4^{-2}$$

Initiation

$$S_2O_8^{2-} \rightarrow SO_4^{\cdot-} + (SO_4^{\cdot-} \text{ or } SO_4^{-2})$$

Propagation

$$SO_4^{\cdot-} + H_2O \rightarrow OH^{\cdot-} + HSO_4^-$$

Termination

$$SO_4^{\cdot-} + RH \text{ or } M \rightarrow SO_4^{-2}$$
Study Site

- Remedial program
 - Excavation of overburden to limestone surface
 - Pumping of NAPL
 - ISCO of dissolved phase
 - EAB of residue
Site

• Residential site, Central Ontario
• Fuel oil spill
 • ~600 L
• Geology
 • Glacial overburden (~1 m thick)
 • Fractured limestone
• Hydrogeology
 • Water table within limestone
 • ~0.5 m/year fluctuation
 • Packer testing
• Geochemistry
 • Iron/sulphate reducing
PHC Plume

Source

Plume

Groundwater Flow
PHC Plume

Background Well
Source
Plume
Impacted Well
Groundwater Flow
Injection Program

- Oxidant
 - Sodium persulphate activated sodium hydroxide
 - Supplemented with 100 mg/L NaBr tracer

- Injection program
 - Four injections over 6 months
 - 2 locations
 - Background & Impacted
 - Injections completed using packers
 - 15 wt.% S_2O_8
 - 20 psi
 - 650 L/well per injection
Monitoring Program

• Cores of rock collected
 • Pre injection
 • 1, 6 & 12 months after last injection event
 • Frozen on site
 • Sampled in lab at 5 cm intervals
• Analysis
 • Persulphate,
 • Bromide and
 • pH
Non-Impacted Fracture Profiles

Persulfate C/C^0

Bromide C/C^0

Depth (cm)

28 Days
182 Days
358 Days
PHC-Impacted Fracture Profiles

Persulfate C/C₀

Bromide C/C₀

Depth (cm)

28 Days
182 Days
358 Days
Bromide Profiles

Bromide C/Co

Depth (cm)

0 0.2 0.4 0.6 0.8 1.0

Non-Impacted

28 Days
182 Days
358 Days

Bromide C/Co

Depth (cm)

0 0.2 0.4 0.6 0.8 1.0

Impacted

28 Days
182 Days
358 Days

Porewater Solutions
Expertise • Experience • Innovation

INSITU
REHABILITATION SERVICES
Persulphate Profiles

Persulfate C/Co

Depth (cm)

Non-Impacted

Impacted

28 Days

182 Days

358 Days
pH Profiles

pH: Non Impacted

pH: Impacted
Model

- BioRedox-MT3DMS
 - Van Genuchten analytical solution
 - 3 D
 - 1 D simulations
 - Calibration based on Merkel (2010)
 - ESTCP diffusion column
 - Compared with Sra (2010)
 - Bromide degradation negligible
 - Persulphate half lives between 25 & 50 days
Bromide Calibration

Data for $t=182$ days suggests that a downward velocity continued after injection.
Persulphate Simulation

Non Impacted Fracture

Model versus Observed
(t=28d)

Model versus Observed
(t=182d)

Model versus Observed
(t=352d)

Half life is 25 days
Persulphate Simulation

PHC-Impacted Fracture

Model versus Observed (t=28d)

Model versus Observed (t=182d)

Model versus Observed (t=352d)

Observed: Impacted Area Model

Half life is 15 days
Persulphate Simulation

PHC-Impacted Fracture Sensitivity Analysis

Model versus Observed (t=28d)

Model versus Observed (t=182d)

Model versus Observed (t=352d)
Treatment

Total PHCs (µg/L)

Days

S_2O_8 Injections

ORM Injections

Days

0 200 400 600 800 1000 1200
Observations

- Fractured rock remediation provides a special challenge due to diffusion-controlled processes
- Limited tools available to address diffusion
- Chemical oxidation tools include:
 - High concentrations
 - Persistence
 - Long term oxidant source
- Diffusion of persulphate
 - ~20 cm impacted matrix vs ~30 cm vs non-impacted matrix
- Persulphate degrades in absence of PHCS:
 - ~ 25 day half live vs 15 days in presence of PHCs
- pH activation may be issue
 - Evaluated pH (>10) observed at 10 cm for less than 3 months in both impacted and non-impacted matrices, suggesting buffering reactions are occurring
Questions