Assessment of the Mobility of Heavy Metals in the Unsaturated Zone at Small Arms Firing Ranges

Sylvie Brochu¹, Mathieu Laporte-Saumure¹, Louis-Julien Roy¹ and Richard Martel²
¹: DRDC ²: INRS

REMTEC 2013, Banff (BC)
October 14-16, 2013

NOTICE
(U) This document has been reviewed and DOES NOT CONTAIN controlled goods technical data.
Overview

- Background
- Objective
- Instrumentation/Methods for the Vadose Zone
 - Lysimeters
 - Synthetic Precipitation Leaching Procedure
 - Sequential Extractions
- Results
 - Soils
 - Vadose zone
 - Groundwater
- Summary
- Conclusions
Background

- **Projectiles**: 5.56-mm and 7.62-mm
 - **Core**:
 - Pb-Sb 98/2 (5.56 mm) or 90/10 (7.62 mm)
 - 95% of the bullet mass
 - **Jacket**: Cu-Zn 90/10 (5%)
- Pb, Cu, Sb and Zn in the soils of stop berms above CCME industrial criteria
- May migrate vertically in the vadose zone, and eventually in the water table
Objective

- Soil of stop berms would have to be remediated frequently (every month or so) according to CCME industrial soil criteria
- To perform appropriate risk assessment, information is needed on the mobility of the contaminants in the vadose zone and in groundwater in order for the restoration not to be performed:
 - Too often when strictly relying on industrial criteria
 - Too late when contamination has reached groundwater
Methods

- Metal (Pb, Cu, Sb, and Zn) concentrations in stop berms surface and sub-surface soils
- Leaching potential of the sub-surface soil contaminants
 - Synthetic Precipitation Leaching Procedure
 - Sequential Extraction
- Metal concentrations *in situ* in the vadose zone
 - Gravimetric lysimeters (GL)
 - Suction cup lysimeters (SL)
- Metal concentrations in groundwater
 - Monitoring wells
Soil Sampling

- Concentrations of heavy metals in the soils on the stop berm of 2 Small Arms Firing Range (SAFR)
 - Systematic multi-increment sampling strategy (SMISS) of the surface soils
 - Depth profiling
 - Total extraction procedure (e.g., USEPA method 3052)
 - Analysis by ICP-MS (e.g., USEPA method 6020A)
Synthetic Precipitation Leaching Procedures (SPLP)

- SPLP tests (EPA method 1312)
 - Collection of 0-15 and 0-30 cm depth samples using SMISS
 - SPLP extractant
 - $\text{H}_2\text{SO}_4/\text{HNO}_3$ 60/40
 - pH 4.20
 - Soil/extractant 1/20
 - 18 hours
 - Rotary mixer
 - Resulting solution were filtered and analyzed for Cu, Pb, Sb, and Zn by ICP-MS
 - Results are compared with Health Canada Drinking Water Criteria (HCDWC)
Sequential Extractions (Tessier protocol)

- Fraction of metals:
 - Exchangeable
 - Linked to carbonates
 - Linked to iron and manganese oxides
 - Linked to organic matter
 - Totally insoluble
- Used in the mining industry to perform environmental risk assessment
- Risk is considered high if fractions (1) and (2) are large
- Ongoing
Gravimetric Lysimeters (GL)

- Disturb considerably the surrounding area
- Can be installed easily during range construction
- Max depth ~ 2 m
- Measure the total amount of metals leaching
- Adequate for all metals
Succion Cup Lysimeters (SL)

- Nylon, PVC or PTFE
- Easy to install on operating stop butts
- Minimal disturbance of soil
- Any depth (PTFE or PVC)
- 2 m bgs (nylon)
- Measure the dissolved metal concentration
- Not adequate for Sb and Cu
- Only nylon SL for Pb (any pH) and Zn (pH 6.5 and 8.5)
Pore Water and Groundwater Sampling

- Pore water sampling at various depths
 - GL – Sites 1 and 2
 - PTFE cylinders (pierced at the bottom; 27-cm diameter, 32-cm high) connected to a LDPE 10-L sampling bottle via a PTFE tube
 - Site 1: 0.75 m and 1.5 m bgs
 - Site 2: 0.3 m, 0.55 m, 0.75 m, 1.5 m bgs
 - Sampling bottles were located in an access well
 - SL – Site 1
 - PTFE, 30-cm length, horizontal inclination 67°
 - 1, 1.5, 2, 3, 4.5, and 6 m bgs
 - GL and SL were sampled ~once a month on an over 5-y, and 3-y period, respectively (only years 2010 and 2011 are reported here)

- Groundwater sampling
 - Observation wells were located in the immediate vicinity of the stop berms
Results – Soil Concentrations

- Surface soil concentrations of Pb, Cu, Sb and Zn above industrial CCME criteria
- Soil concentrations of heavy metals fall below industrial criteria at depth > 30 cm
Metal Concentration in the Vadose Zone

Pb and Sb > DW criteria detected in GL at depth of 1.5 m
Vadose Zone

Pb and Sb e DW criteria detected in SL at depth of 4.5 m
Synthetic Precipitation Leaching Procedures (SPLP)

Leaching of contaminants from soils exposed to rain at pH 4.2 (EPA 1312)
SPLP vs GL

- Sb and Pb are the most mobile in the vadose zone
- [Sb] and [Pb] in SPLP overestimates those of GL
Groundwater

<table>
<thead>
<tr>
<th>Observation wells</th>
<th>Cu ug/L</th>
<th>Pb ug/L</th>
<th>Sb ug/L</th>
<th>Zn ug/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO-242-8m 16/4/9</td>
<td>1,1</td>
<td>2,5</td>
<td>2</td>
<td>1,3</td>
</tr>
<tr>
<td>PO-243-7m 16/4/9</td>
<td>2</td>
<td>5,3</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>PO-249-9m 16/4/9</td>
<td>1,4</td>
<td>2</td>
<td>1,5</td>
<td>1</td>
</tr>
<tr>
<td>PO-242-8m 5/9/9</td>
<td>1,1</td>
<td>1,9</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>PO-243-7m 5/9/9</td>
<td>2</td>
<td>12,4</td>
<td>2,1</td>
<td>2,5</td>
</tr>
<tr>
<td>PO-249-9m 5/9/9</td>
<td>2,6</td>
<td>9,6</td>
<td>2,1</td>
<td>2,3</td>
</tr>
<tr>
<td>PO-242-7m 9/7/11</td>
<td>< 0,9</td>
<td>< 3</td>
<td>< 8</td>
<td>1,5</td>
</tr>
<tr>
<td>PO-243-7m 17/7/11</td>
<td>0,8</td>
<td>3,5</td>
<td>0,1</td>
<td>1,2</td>
</tr>
<tr>
<td>PO-249-9m 9/7/11</td>
<td>< 0,9</td>
<td>< 3</td>
<td>< 8</td>
<td>2,4</td>
</tr>
</tbody>
</table>
Summary

Soils:
- Pb, Cu, Sb and Zn exceed CCME industrial criteria
- Mainly concentrated 30 cm bgs

Vadose zone (GL)
- [Zn] and [Cu] < HCDWC
- [Sb] and [Pb] > HCDWC at 1.5 m bgs
- [Sb] and [Pb] in SPLP overestimates those of GL at 1.5 m
- [Sb] > HCDWC at 4.5 m bgs (SL)
- Sb still detected at 6-m bgs (SL)
- Pb still detected at 4.5 m bgs (SL)

Groundwater: seldom detected at 7 to 9 m bgs
Conclusions

- Migration of Pb, Sb, Cu and Zn bgs
 - Cu and Zn not of concern
 - Sb and Pb are the most mobile
 - Important dilution factor when the contaminants reach the groundwater

- Surface soil concentrations of Pb, Cu, Sb and Zn:
 - Not an appropriate assessment of the environmental risk
 - CCME prescribes a specific site assessment
 - Costly and time consuming

- SPLP: Early warning of a potential contamination of the water table that has to be carefully interpreted

- A monitoring of the vadose zone should be done in order to avoid any metal pollution of water table, particularly for shallow groundwater