CONSIDERATIONS FOR SOIL SELENIUM GUIDELINES AND RESULTS OF INITIAL TOXICITY TESTING

Remediation Technologies Symposium
October 18, 2012 Banff, Alberta

Tyler Prediger, MSc, PAg
Anthony Knafla, MSc, DABT
Jay Woosaree, MAg, PAg
Nicola Cook, PhD, AIT
OVERVIEW

• Background
 • Distribution, uses, basic chemistry

• Selenium speciation and thermodynamics

• Selenium toxicity
 • Accumulator & non-accumulator species

• Soil Guidelines

• Initial plant toxicity testing
 • Role of sulfate, hormesis, results

• Discussion
SELENIUM DISTRIBUTION

• 69th most abundant element (ATSRD, 2003)

• Natural soil concentrations are largely dependant on weathering of parent materials

• Worldwide soil distribution varies

• Soil concentrations range up to 4.7 mg/kg in Canada (CCME, 2009) and 2.3 mg/kg in Alberta (Penny, 2003)
SOIL SELENIUM DISTRIBUTION IN THE UNITED STATES

Se (ppm, AA)
- >0.84
- 0.626 - 0.839
- 0.524 - 0.625
- 0.456 - 0.523
- 0.401 - 0.455
- 0.36 - 0.4
- 0.321 - 0.359
- 0.292 - 0.32
- 0.264 - 0.291
- 0.236 - 0.263
- 0.211 - 0.235
- 0.192 - 0.21
- 0.171 - 0.191
- 0.152 - 0.17
- 0.135 - 0.151
- 0.121 - 0.134
- 0.11 - 0.12
- 0.101 - 0.109
- 0.1 - 0.1
- <0.099
- No Data

Sampling density = 1/289 km²
25th% = 0.1 ppm; Median = 0.2 ppm; 75th% = 0.5 ppm; Max: 223 ppm
USES AND ANTHROPOGENIC SOURCES

- Electronics, glass manufacturing, medicine, pesticides, pigments, shampoo, photoreceptors, etc. (ATSDR, 2003)

- In 2003, Japan was the largest Se producer, followed by Canada (CCME, 2009)

- Primary source of Canadian Se is from smelting in Ontario (CCME, 2009)
Selenium Chemistry

- Metalloid located between sulfur & tellurium on Periodic Table
- Similar in resemblance & properties to sulfur

Image source: Helmenstine, 2012
Selenium Chemistry (cont’)

- Selenium fate gained attention in 1980s with Kesterson Reservoir in California
- Complex Biogeochemistry & Thermodynamics
 - Other minerals, microbiological activity, volatilization, Eh, pH, etc.
- Four common valence forms
Four Common Selenium Species

<table>
<thead>
<tr>
<th>Species</th>
<th>Charge</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selenide (Se²⁻)</td>
<td>[-2]</td>
<td>Low pH, low Eh, relatively insoluble</td>
</tr>
<tr>
<td>Elemental (Se⁰)</td>
<td>[0]</td>
<td>Not common in natural environments, relatively insoluble</td>
</tr>
<tr>
<td>Selenite (SeO₃⁺⁴)</td>
<td>[+4]</td>
<td>Neutral pH, well-drained soils, can be soluble, found in water. More reduced than selenate</td>
</tr>
<tr>
<td>Selenate (SeO₄⁺⁶)</td>
<td>[+6]</td>
<td>Alkaline soils, highly soluble, found in water. Highest oxidation state</td>
</tr>
</tbody>
</table>
Thermodynamic Predictions of Selenium Species

Adapted from Masscheleyn & Patrick (1993)

- Selenious Acid
- Hydrogen Selenide [-2]
- Elemental Selenium
- Selenite [+4]
- Selenate [+6]
- Biselenite

pe = Eh(mV)/59.2

Black, dashed lines represent contours of equal selenide activities.
Selenium Toxicity

• Essential nutrient for animals and humans, *but not for plants*

• Essential & Toxic concentrations are quite close for humans and animals

 • “the essential toxin” *(Stolz et al, 2002)*

 • “double-edged sword element” *(Fernandez-Martinez & Charlet, 2009)*
PLANT SELENIUM TOXICITY

- Arid and semi-arid regions

- Plant toxicity is related to valence form

 - Selenate $[+6]$ is generally most toxic form to plants, followed by Selenite $[+4]$

 (ATSRD, 2003)

- White chlorosis
Selenium Plant Toxicity (cont’)

White Chlorosis in *Hordeum vulgare* (barley)
grown in artificial soil spiked with 15 mg/kg selenium (as selenate) without added sulphate
Plant selenate uptake can be inhibited by sulfate salinity

- Similar effect not present with chloride (Mikkelsen et al, 1988)
- Effect not present in other valence forms of selenium (Gupta & Gupta, 2000)
Accumulators will preferentially uptake selenium over sulfur \((\text{Terry et al, 2000})\)

Most species are non-accumulators and will preferentially take up sulfate \((\text{Terry et al, 2000})\)

Non-accumulators have an increased sensitivity to selenium
CURRENT SOIL SELENIUM GUIDELINES

- CCME & Alberta Tier 1 Guideline is 1 mg/kg
 - Natural concentrations up to 4.7 mg/kg in Canada
- Primarily based on two studies
 - Singh & Singh (1979) and Carlson et al (1991)
 - Based on Selenate [+6]
- LOEC approach
Preliminary Plant Toxicity Testing

- Two objectives:
 - To quantify selenate [+6] toxicity
 - To quantify the selenate-sulfate relationship
- Endpoints measured and test doses are not believed to have been assessed in previous research
Methodology & Research Design

- Generally followed Environment Canada’s plant toxicity standardized methodology
- Artificial soil
 - 8 concentrations of selenate, 4 sulfate concentrations
 - 4 – 5 replicates
 - *Medicago sativa* (alfalfa)
 - Grown in growth chambers at AITF
- EC$_{25}$ values for measured endpoints, based on threshold / point of departure approach
RESULTS – 0 mg/kg SULFATE

- Observable effects
- White chlorosis
- 100% mortality in 15 mg/kg Se

15 mg/kg Se vessel and 0 mg/kg SO₄
0 mg/kg SO$_4$

Note: No 15 mg/kg Se due to 100% mortality
0 mg/kg Se vessel (left) and 15 mg/kg Se vessel (right), both with 0 mg/kg SO₄
BMD/EC Values for 25% Adverse Effect

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>EC$_{25}$ (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Mass</td>
<td>0.49</td>
</tr>
<tr>
<td>Shoot Mass</td>
<td>0.77</td>
</tr>
<tr>
<td>Root Length</td>
<td>0.86</td>
</tr>
<tr>
<td>Shoot Length</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Current Alberta & CCME guideline is 1 mg/kg
ADDED SULFATE RESULTS
(500, 1,500, 3,000 mg/kg)

- Minimal observable effects
- 15 mg/kg Se had good vigor
- Stimulant response
HORMESIS

- Low dose stimulation, high dose inhibition

- With added sulfate, an apparent hormetic effect was observed (J-Curve)

- Used zero equivalent dose (ZED) approach to assess (Gaylor et al, 2003)
HORMESIS

Maximum Stimulation (averages 130-160% of control)

Distance to NOAEL (averages 5-fold)

NOAEL

Hormetic Zone (averages 10- to 20-fold)

Control

Stimulant Response

100%

Response

Dose

Image source: Calabrese, 2008
ZED Values with Sulfate

<table>
<thead>
<tr>
<th>Sulfate Concentration (mg/kg)</th>
<th>Endpoint</th>
<th>500</th>
<th>1,500</th>
<th>3,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Mass</td>
<td></td>
<td>13.27</td>
<td>>15</td>
<td>13.17</td>
</tr>
<tr>
<td>Shoot Mass</td>
<td></td>
<td>13.29</td>
<td>NA</td>
<td>11.86</td>
</tr>
<tr>
<td>Root Length</td>
<td></td>
<td>6.01</td>
<td>>15</td>
<td>5.66</td>
</tr>
<tr>
<td>Shoot Length</td>
<td></td>
<td>>15</td>
<td>NA</td>
<td>7.30</td>
</tr>
</tbody>
</table>

Current Alberta & CCME guideline is 1 mg/kg

NA = not assessed with ZED approach and were assessed with Hill model because of lack of apparent hormetic effect
Selenium (as Selenate) Concentrations Posing Negligible Risk to *Medicago sativa*

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>0 mg/kg SO4</th>
<th>500 mg/kg SO4</th>
<th>1,500 mg/kg SO4</th>
<th>3,000 mg/kg SO4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Root Mass</td>
<td>ZED</td>
<td>ZED</td>
<td>BMD</td>
<td>ZED</td>
</tr>
<tr>
<td>Shoot Mass</td>
<td>ZED</td>
<td>BMD</td>
<td>ZED</td>
<td>BMD</td>
</tr>
<tr>
<td>Root Length</td>
<td>BMD</td>
<td>ZED</td>
<td>ZED</td>
<td>ZED</td>
</tr>
<tr>
<td>Shoot Length</td>
<td>BMD</td>
<td>ZED</td>
<td>BMD</td>
<td>ZED</td>
</tr>
</tbody>
</table>

Current Alberta & CCME Guideline

Selenium (as Selenate) Concentration (mg/kg)
DISCUSSION

• Selenium toxicity to plants is based on valence form and biochem/thermodynamics are complex

• Se accumulator Vs non-accumulator species/genera

• Antagonistic relationship of selenate [+6] and sulfate
 • Hormesis

• Socio-economic implications of the 1 mg/kg eco-contact guideline
THANK YOU

- Greg Huber - Equilibrium Environmental
- Lorie Vickerman - Equilibrium Environmental
- Marshall McKenzie - Alberta Innovates Technology Futures
- Tania McDonald - Alberta Innovates Technology Futures
- Jeff Newman - Alberta Innovates Technology Futures
- Allen Verbeek - Lakeland College
- Jolien Miller - Lakeland College
- Farideh Malek - Lakeland College
- Karen Schmidt - Exova
- Trevor Ahlstrom - Access Labs
- Bob Corbet - Access Labs
- Luanne Patterson - CN Rail
- Kyle Parkyn - Matrix Solutions
- Devon Walker - Ridgeline Environment
CONTACT INFORMATION

Tyler Prediger
Equilibrium Environmental Inc.
tprediger@eqm.ca

Anthony Knafla
Equilibrium Environmental Inc.
tknafla@eqm.ca

Jay Woosaree
Alberta Innovates Technology Futures
jay.woosaree@albertainnovates.ca

Nicola Cook
Lakeland College
nikki.cook@lakelandcollege.ca

EQUILIBRIUM ENVIRONMENTAL INC.
Alberta Innovates Technology Futures
Lakeland College