Surgical In-Situ Chemical Oxidation Remediation Utilizing a High Resolution Site Characterization-Driven Approach to Optimize Reagent Delivery and Remediation Strategy

Mike Mazzarese (Vironex, Inc., Bowie, MD, USA), Eliot Cooper (Vironex, Inc., Golden, CO, USA), Scott Wisher (Vironex, Inc., Golden, CO, USA), Brendan Gerber (Vironex, Inc., Bowie, MD, USA)
Some Reasons In-Situ Remediation Can Fail

- Lack of detailed characterization data (especially in source zones), relying on monitoring well data for site characterization and design
- Lack of information regarding mass vs. lithology and hydraulic conductivity of target intervals
- Inadequate subsurface reagent distribution
- High expectations not taking into consideration rebound from back diffusion
High Resolution Profiling

• Tools: Membrane Interface Probe (MIP), Hydraulic Profiling Tool (HPT), Electrical Conductivity (EC), Laser Induced Fluorescence (LIF)
 – Lack of vertical characterization data => MIP
 – Lack of information regarding mass vs. lithology/hydraulic conductivity => MIP/HPT
 – Lack of understanding regarding subsurface reagent distribution => EC
 – Poor expectations regarding rebound from back diffusion => MIP/HPT
Project Summaries

- **Site 1: VA Dry Cleaner**
 - Direct Sensing Technologies: Membrane Interface Probe (MIP), Electrical Conductivity (EC) radius of influence verification
 - Remediation Strategy: In Situ Chemical Oxidation (ISCO) injection with potassium permanganate (KPmag)

- **Site 2: NC Former Retail Gas Station**
 - Direct Sensing Technologies: MIP, EC radius of influence verification
 - Remediation Strategy: ISCO injection with high pH activated Klozur (sodium persulfate)

- **Site 3: ON Manufacturing Site**
 - Direct Sensing Technologies: MIP, EC radius of influence verification
 - Remediation Strategy: ISCO injection and in situ mixing with High pH activated Klozur (sodium persulfate)
Site #1 – Base Design

• VA (DC Metro) Dry Cleaner
 – Risk based goal of 100 ppb PCE at property boundary
• Preliminary design based on well data
 – Wells screened 3-6 m bgs, GWT @ 2.4 m bgs => Injection zone = 2.4-6 m bgs
 – Injection Footprint = 600 m²
 – 1,920 kg Potassium Permanganate specified based on COCs and estimated PNOD, @ 1% solution = 190,000 Liters
Site #1 – Optimized Design

- Optimized Approach
 - Pilot Phase (4 days)
 - MIP (1.5 days)
 - 3D imaging
 - Confirmation Sampling/PNOD Sample Collection (0.5 days)
 - Injection Testing (2 days)
 - Determine flow rate and pressure vs. depth
 - Determine ROI (EC + visual)
 - Full Scale Injection (9 days)
Site #1 – MIP Imaging

ECD Greater Than
1.03E+006 μV

Well Screen Zone
Site #1 – Optimized Design

• Revised Design
 – Design based on MIP data, discrete groundwater sampling, lab determined PNOD, and ROI from pilot test
 – Injection zone varied per MIP cross section
 – Permanganate concentration varied based on discrete sampling data
 – Injection Footprint = 460 m2 (-140 m2)
 – 2,169 kg (+13%) KPmag specified based on new COC concentrations and PNOD, @ 1-2% solution = 119,000 L (-38%)
Site #1 – Optimized Design

Plume Area A
Injection Zone = 5.5-6.7 m

Source Area
Injection Zone = 2.1-6.7 m

ECD Greater Than
1.00E+006 μV

- 1,300 ppb
- 200 ppb
- 150 ppb
- 300 ppb
- 300 ppb = [PCE]
Site #1 – Data Summary

<table>
<thead>
<tr>
<th></th>
<th>PCE</th>
<th>TCE</th>
<th>DCE</th>
<th>VC</th>
<th>Total</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MW-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. - 09</td>
<td>1,500</td>
<td>12</td>
<td>43</td>
<td>ND</td>
<td>1,555</td>
<td></td>
</tr>
<tr>
<td>Apr. - 11</td>
<td>300</td>
<td>2.5</td>
<td>5.9</td>
<td>ND</td>
<td>308</td>
<td></td>
</tr>
<tr>
<td>Feb. - 12</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td></td>
<td>N/S because well water still colored</td>
</tr>
<tr>
<td>Sep. - 12</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-98%</td>
<td>Assuming average of Jan and April 2011 values as baseline</td>
</tr>
<tr>
<td>MW-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. - 09</td>
<td>140</td>
<td>3.4</td>
<td>11</td>
<td>ND</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>Apr. - 11</td>
<td>8.2</td>
<td>1.5</td>
<td>2.7</td>
<td>ND</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Feb. - 12</td>
<td>69</td>
<td>2.9</td>
<td>11</td>
<td>ND</td>
<td>83</td>
<td></td>
</tr>
<tr>
<td>Sep. - 12</td>
<td>230</td>
<td>2.9</td>
<td>11</td>
<td>ND</td>
<td>244</td>
<td></td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>192%</td>
<td>Assuming average of Jan and April 2011 values as baseline</td>
</tr>
<tr>
<td>MW-5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jan. - 09</td>
<td>950</td>
<td>6.3</td>
<td>13</td>
<td>1.6</td>
<td>970.9</td>
<td></td>
</tr>
<tr>
<td>Apr. - 11</td>
<td>720</td>
<td>8.4</td>
<td>16</td>
<td>ND</td>
<td>744.4</td>
<td></td>
</tr>
<tr>
<td>Feb. - 12</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td>N/S</td>
<td></td>
<td>N/S because well water still colored</td>
</tr>
<tr>
<td>Sep. - 12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-100%</td>
<td>Assuming average of Jan and April 2011 values as baseline</td>
</tr>
<tr>
<td>MW-8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. - 11</td>
<td>1,300</td>
<td>ND</td>
<td>8</td>
<td>ND</td>
<td>1,308</td>
<td></td>
</tr>
<tr>
<td>Feb. - 12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sep. - 12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-100%</td>
<td>Assuming April 2011 value as baseline</td>
</tr>
<tr>
<td>MW-9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apr. - 11</td>
<td>150</td>
<td>2.6</td>
<td>ND</td>
<td>ND</td>
<td>152.6</td>
<td></td>
</tr>
<tr>
<td>Feb. - 12</td>
<td>22</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>22</td>
<td></td>
</tr>
<tr>
<td>Sep. - 12</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>% Change</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-100%</td>
<td>Assuming April 2011 value as baseline</td>
</tr>
</tbody>
</table>
Site #1 – Next Steps

- **Path Forward**
 - Additional MIP investigation in area of MW-3
 - Directional injection or angle borings to overcome access issues
Site #2 - Base Design

- NC, Confidential Location
 - Risk based goal of 5,000 ppb Benzene
 - Original design based on monitoring well data and TPH-GRO soil data
 - Wells screened 3-6 m bgs, GWT @ 3 m bgs => Injection zone = 3-6 m bgs
 - Injection Footprint = 230 m2
 - 8,900 kg sodium persulfate (SP) specified based on COCs and estimated SOD, @ 12% solution = 70,000 L (100% mobile porosity injected)
Site #2 – Optimized Design

- Optimized Approach
 - Pilot Phase (4 days)
 - MIP (2 days)
 - 3D imaging
 - Confirmation Sampling/SOD/pH buffering Sample Collection (0.5 days)
 - Injection Testing (1.5 days)
 - Determine flow rate and pressure vs. depth
 - Determine ROI (EC)
 - Full Scale Injection (6 days)
Site #2 – MIP Imaging
Site #2 – Optimized Design

• Revised Design
 – Revised design based on MIP data and discrete soil samples
 – Injection zone = 3.7-5.2 ft bgs or 3.7-6.1 m bgs
 – Injection Footprint = 280 m² (increase from 230 m² to include additional mass identified with the MIP)
 – 4,700 kg (-47%) SP based on COCs and known SOD, @ 12% solution = 43,000 L (-39%)
Site #2 – Equipment Photos
ROI Verification Using EC

• EC can be used to track reagent distribution provided that the reagent or tracer provides a response over the baseline geological response

• Examples of reagents that can be tracked:
 – Sodium Persulfate, Sodium Percarbonate, Sodium and Potassium Pmag, Sodium Bicarbonate, Sodium Lactate
Site #2 – Data Summary

MW-5R

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Date</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylene (total)</th>
<th>Methyl Tert Butyl Ether</th>
<th>Total</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-months prior</td>
<td>10/31/2011</td>
<td>7960</td>
<td>28000</td>
<td>2660</td>
<td>13800</td>
<td>3830</td>
<td>56250</td>
<td></td>
</tr>
<tr>
<td>2-weeks prior</td>
<td>5/22/2012</td>
<td>7980</td>
<td>32200</td>
<td>3470</td>
<td>19200</td>
<td>3820</td>
<td>66670</td>
<td></td>
</tr>
<tr>
<td>1-week after</td>
<td>6/14/2012</td>
<td>244</td>
<td>1190</td>
<td>227</td>
<td>1120</td>
<td>36.9</td>
<td>2818</td>
<td>95%</td>
</tr>
<tr>
<td>1-month after</td>
<td>7/9/2012</td>
<td>336</td>
<td>2010</td>
<td>481</td>
<td>2400</td>
<td>48.4</td>
<td>5275</td>
<td>91%</td>
</tr>
<tr>
<td>2-month after</td>
<td>8/14/2012</td>
<td>201</td>
<td>1050</td>
<td>283</td>
<td>1300</td>
<td>48.5</td>
<td>2883</td>
<td>95%</td>
</tr>
</tbody>
</table>

MW-8R

<table>
<thead>
<tr>
<th>Event Description</th>
<th>Date</th>
<th>Benzene</th>
<th>Toluene</th>
<th>Ethylbenzene</th>
<th>Xylene (total)</th>
<th>Methyl Tert Butyl Ether</th>
<th>Total</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>6-months prior</td>
<td>10/31/2011</td>
<td>8000</td>
<td>32100</td>
<td>3180</td>
<td>17200</td>
<td>3170</td>
<td>63650</td>
<td></td>
</tr>
<tr>
<td>2-weeks prior</td>
<td>5/22/2012</td>
<td>8270</td>
<td>36400</td>
<td>3360</td>
<td>17800</td>
<td>3920</td>
<td>69750</td>
<td></td>
</tr>
<tr>
<td>1-week after</td>
<td>6/14/2012</td>
<td>726</td>
<td>760</td>
<td>47</td>
<td>242</td>
<td>96.3</td>
<td>1871</td>
<td>97%</td>
</tr>
<tr>
<td>1-month after</td>
<td>7/9/2012</td>
<td>4540</td>
<td>17100</td>
<td>1870</td>
<td>10800</td>
<td>1530</td>
<td>35840</td>
<td>46%</td>
</tr>
<tr>
<td>2-month after</td>
<td>8/14/2012</td>
<td>4370</td>
<td>19300</td>
<td>1610</td>
<td>8780</td>
<td>2000</td>
<td>36060</td>
<td>46%</td>
</tr>
</tbody>
</table>
Site #3 – Base Design

- COCs: BTEX, C6-C10
- MIP work performed by another contractor
- Initially scoped as injection project
Site #3 – MIP Imaging
Site #3 – Optimized Design

- Groundwater (Plume): Caustic Activated SP Injection
- Groundwater (Source): Caustic Activated SP In Situ Mixing
- Vadose Soil (Source): Excavation/Offsite Disposal
Site #3 – Optimized Design
Site #3 – Project Photographs
Conclusions

• High Resolution tools, when applicable, are critical to developing accurate and dynamic Conceptual Site Models and effective remedial designs.

• The tools allow you to understand how the geology/hydrogeology impacts contaminant distribution and the potential for rebound/back diffusion to set realistic expectations for remediation.

• ISCO application iterations are more precise and targeted.

• Lower life cycle cost savings over traditional sampling and design methods.
Questions?

Thank you!

mmazzarese@vironex.com