SOLIDIFICATION/STABILIZATION CEMENT ADDITIVE and TEST METHOD

PRESENTED BY:
Matt Geary
CETCO Remediation Technologies
AGENDA

- What is Solidification/Stabilization (S/S) ?
- History of S/S
- EPA Superfund Data Regarding S/S Technologies
- Materials for Solidification/Stabilization
- Treatability Mix Studies
- Case Study
What is Solidification/Stabilization (S/S) ?

- S/S treatment protects human health and the environment by immobilizing hazardous constituents within treated material
- Involves mixing a binding agent into contaminated media such as soil, sediment, sludge or industrial waste
- Physical and chemical changes to the treated material
History of S/S Treatment Uses

1950’s Radioactive Waste Management

1970’s Industrial Waste Management

1980’s Remediation
 ► Superfund and other programs
 ► Brownfields
<table>
<thead>
<tr>
<th>Technology</th>
<th>Total number of projects</th>
<th>Polycyclic aromatic hydrocarbons (PAHs)</th>
<th>Other nonhalogenated semivolatile organic compounds</th>
<th>Benzene, toluene, ethylbenzene, xylene (BTEX)</th>
<th>Other nonhalogenated organic compounds</th>
<th>Organic pesticides and herbicides</th>
<th>Other halogenated semivolatile organic compounds</th>
<th>Halogenated volatile compounds</th>
<th>Polychlorinated biphenyls</th>
<th>Metals and metalloids</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bioremediation</td>
<td>113</td>
<td>37</td>
<td>51</td>
<td>33</td>
<td>33</td>
<td>24</td>
<td>17</td>
<td>22</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Chemical Treatment</td>
<td>29</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>4</td>
<td>12</td>
<td>4</td>
<td>13</td>
</tr>
<tr>
<td>Multi-Phase Extraction</td>
<td>46</td>
<td>9</td>
<td>3</td>
<td>11</td>
<td>6</td>
<td>4</td>
<td>8</td>
<td>18</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Electrical Separation</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Flushing</td>
<td>17</td>
<td>3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>3</td>
<td>11</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Incineration</td>
<td>147</td>
<td>27</td>
<td>41</td>
<td>33</td>
<td>23</td>
<td>36</td>
<td>34</td>
<td>52</td>
<td>36</td>
<td>6</td>
</tr>
<tr>
<td>Mechanical Soil Aeration</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Neutralization</td>
<td>15</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Open Burn/ Open Detonation</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Physical Separation</td>
<td>21</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>Phytoremediation</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>Soil Vapor Extraction</td>
<td>255</td>
<td>15</td>
<td>31</td>
<td>107</td>
<td>51</td>
<td>3</td>
<td>33</td>
<td>217</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Soil Washing</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Solidification/Stabilization</td>
<td>217</td>
<td>17</td>
<td>18</td>
<td>13</td>
<td>13</td>
<td>13</td>
<td>16</td>
<td>7</td>
<td>20</td>
<td>35</td>
</tr>
<tr>
<td>Solvent Extraction</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Thermal Desorption</td>
<td>71</td>
<td>21</td>
<td>17</td>
<td>24</td>
<td>15</td>
<td>8</td>
<td>12</td>
<td>33</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>In Situ</td>
<td>14</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Thermal Treatment</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Vitrification</td>
<td></td>
</tr>
<tr>
<td>Total Projects</td>
<td>977</td>
<td>145</td>
<td>175</td>
<td>238</td>
<td>155</td>
<td>103</td>
<td>124</td>
<td>410</td>
<td>104</td>
<td>229</td>
</tr>
</tbody>
</table>
Contaminant Types Treated by S/S (EPA-542-R-00-010)

Exhibit 10:

Total Number of Projects = 163

- Metals and Organic (50) - 31%
- Radioactive Metals and Metals (4) - 2%
- Radioactive Metals (3) - 2%
- Organics Only (10) - 6%
- Metals Only (92) - 56%
- Nonmetals only (2) - 1%
- Organic and Nonmetals (1) - 1%
- Radioactive Metals and Organics (1) - 1%
S/S Binding Agents and Additives

- Portland Cement
- Cement kiln dust
- Slag
- Fly ash
- Organoclay
- Bentonite
Portland Cement

► Description
A generic material produced by over 50 companies at over 125 plants in the U.S. and Canada. The principal use of cement is in concrete for construction. Concrete is a mixture of Portland cement, aggregates (gravel and sand), and water. The cement used in S/S is the same as that used in concrete.

► Application and Benefit
Portland cement is used in waste management as a binding reagent and is mixed into contaminated media or waste in order to immobilize contaminants within the treated material.

► Comments
► Manufactured to ASTM specification which ensures uniformity.
► Used to treat the greatest variety of wastes since the 1950's.
► Readily available in all parts of U.S. and Canada. It is economical and can be purchased in small or bulk quantities.
Sodium Bentonite

► Description
High swelling clay composed primarily of the mineral sodium montmorillonite.

► Application and Benefit
Uses as an additive to Portland Cement to lower hydraulic conductivity.

► Comments
• Manufactured to API specifications to assure consistency.
• Available in large quantities from bentonite manufacturers and in small quantities from distributors.
Organophilic Clay

- **Description**
 Clay that is specially treated to convert it from hydrophilic to organophilic.

- **Application and Benefits**
 Uses as an additive to Portland Cement to reduce organic leaching and aid curing of cement.

- **Comments**
 - Manufacturer should provide manufacturing quality control, including treat content (ASTM D7626), to assure consistency.
 - Material used in construction should be same as material tested in treatability study to help assure effectiveness.
organophilic clay-based S/S Processes: Recent investigations indicate that these organophilic binders truly bond with organic wastes.

For certain organics, organophilic clay may improve cement-based or pozzolanic process performance.

In applying S/S for treating organic contaminants, the use of certain materials such as organophilic clay, either as a pretreatment or as additives in cement, can improve contaminant immobilization in the solidified/stabilized wastes.
S/S Typical Performance Criteria

- Unconfined Compressive Strength: 50 psi
- Hydraulic Conductivity: 1×10^{-7} cm/s
- Leachability (varies based upon site risk assessment)
S/S Process: Feasibility and Mix Design Tests

Physical Testing

- Hydraulic Conductivity/ Permeability
- Unconfined Compressive Strength – measure of free liquids & durability
- Freeze-Thaw & Wet-Dry Durability
- Paint Filter Test (PFT) – free liquids
- Moisture Content
- Density

Solidified samples prepared for strength and permeability testing
Permeability testing apparatus
Unconfined compressive strength
S/S Process: Feasibility and Mix Design Tests

Chemical (Leaching)

- Toxicity Characteristic Leaching Procedure (TCLP)
- Synthetic Precipitation Leaching Procedure (SPLP)
- Semi-Dynamic Leach
Semi-dynamic Leaching Test

- US EPA Method 1315 (expected to be adopted by end of 2012)
- Determines mass transfer release rates of COC from low-permeability material under diffusion controlled release conditions.

- One of four leaching test methods of the LEAF Project, a collaboration of:
 - USEPA Office of Research & Development and Office of Solid Waste
 - Vanderbilt University
 - Energy Research Centre of the Netherlands (Petten, The Netherlands)
 - DHI (Horsholm, Denmark)
Flow through untreated soil versus treated soil

Untreated Soil
- Groundwater flow: 150 [m3/yr]
- Water percolates through fill

S/S-Treated Material
- Groundwater flow: 150 [m3/yr]
- Water flows around S/S mass on all sides
Semi-Dynamic Leaching Procedure

n leaching intervals (Δt_1 thru Δt_n)

A_1 A_2 ... A_n

L_1 L_2 ... L_n

1 sample

n leachates for chemical analysis

(d)
CASE STUDY
Virginia Wood Treating Site Treatability Study Mix Design

<table>
<thead>
<tr>
<th>MIX ID</th>
<th>Total Reagent Dose</th>
<th>Portland-Slag Dose</th>
<th>Bentonite Powder Dose</th>
<th>GAC Dose</th>
<th>OC Dose</th>
<th>Basis</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9.5</td>
<td>8</td>
<td>0.5</td>
<td>0</td>
<td>1</td>
<td>Low OC dose</td>
</tr>
<tr>
<td>8</td>
<td>9.5</td>
<td>8</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>Mid GAC Dose</td>
</tr>
<tr>
<td>9</td>
<td>10.5</td>
<td>8</td>
<td>0.5</td>
<td>0</td>
<td>2</td>
<td>Mid OC dose</td>
</tr>
<tr>
<td>10</td>
<td>10.5</td>
<td>8</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>Mid GAC/Low OC dose</td>
</tr>
<tr>
<td>11</td>
<td>12.5</td>
<td>8</td>
<td>0.5</td>
<td>0</td>
<td>4</td>
<td>High OC dose</td>
</tr>
<tr>
<td>12</td>
<td>16.5</td>
<td>12</td>
<td>0.5</td>
<td>0</td>
<td>4</td>
<td>Increased cement, High OC dose</td>
</tr>
</tbody>
</table>

All data in wt%
Virginia Wood Treating Site Semi-Dynamic Leaching Study

Figure 4: Day-averaged PCP concentration profiles in close proximity to S/S-treated contaminated soil surface.
Summary

- Cement-based Solidification/Stabilization is a proven technology.
- Bentonite can be added to help decrease hydraulic conductivity.
- Organophilic clay has been shown to be an effective additive for sorbing organics.
- New leachability tests show that organophilic clay can be effective at low doses of 1-2%.