Enhancement of LNAPL in situ recovery using soil washing with a surfactant solution

By:

THOMAS ROBERT, PHD student
Dr. Richard Martel, Research Supervisor
Dr. René Lefebvre, Research Co-Supervisor
Dr. Uta Gabriel Research Professional
Presentation Objectives

(1) Present the facilities for Site Remediation at the INRS-ETE laboratory in Quebec City;

(2) Present our current research project: a 3D lab-scale soil and groundwater remediation test using a technology train, including both Slurping and SEAR.
Project Background – *In Situ Limitations*

- Successful GW remediation requires almost **total** LNAPL mass reduction from source zone;
- *In situ* technologies have mass-reduction limitations:
 - Slurping: leaves residual LNAPL trapped in the saturated zone by capillary forces;
 - SEAR: requires large volumes of solutions and effluent treatment is not economically interesting.
Project Background – *Recovery Mechanisms*

- SEAR targets 2 LNAPL recovery mechanisms:

 1) LNAPL mobilisation
 - Reduction in capillary forces;
 - Increase in oil relative permeability;

 2) LNAPL increased dissolution in water
 - Micelle formation above the critical micelle concentration.
Project Background – 3D Lab. Experiments

• 1D experiments are usually promising – but what is the performance in a 3D environment representing field conditions?
 – Actual field-like injection/extraction pattern with RADIAL FLOW;
 – Analysis of 3D phenomena:
 • Sweep efficiency (contact) and preferential flow effects on recovery
 • Dispersion in the soil and dilution at extraction wells
 – Field-characterisation tests can be performed inside the 3D model and results can be compared with actual field values:
 • Slug tests
 • Inter-well tracer tests

KEY PARAMETER FOR IN SITU SUCCESS!
Methodology - Laboratory setup (1/4)

Triangular Stainless Steel Tank
holding up to 4 m³ of soil

- 3,0 m
- 1,8 m

Controlled Temperature Lab (8 deg. C.)

- 1 m³ reservoir (injection)

- **Flow Meter**

- **1 m³ reservoir (extraction)**

Ball Valves Diaphragm Pumps
Methodology - Laboratory setup

1/8 of a 5-spot pattern

1 Injection well: PP1

1 Extraction well: PP2

7 Observation wells: PO1 to PO6, PP3

6 Three-levels sampling wells: MP1 to MP6

4 Pressure probes: PP1, PO1, PO3, PO5

4 Salinity probes: PO2, PO6, PP3, PP2
Slurping unit

Water deaeration towers

Data acquisition and operation control

Automatic water samplers
Methodology - Washing solution selection

- Confidential blend (Ionic surfactant + Co-solvent + Polymer + NaCl)
- Injection concentration is over 60 X CMC (Enhance LNAPL solubility)
- Sand column experiments: 94%-mass removal of weathered gasoline after a 1,8 PV flush (both mobilisation and solubilisation observed)
- Potential impact on IFT and on BTEX dissolution:
Methodology- Washing solution selection

- **Co-solvent (ex. alcohol):**
 - Increases surfactant solubility in solution;
 - Contributes to enhanced oil solubilisation;
 - Contributes to IFT reduction.

- **Shear-thinning polymer:**
 - Stabilize the sweeping front (favourable mobility ratio);
 - Increase viscous forces.

Example of mobility control from a previous project (DNAPL)
From Robert et al. 2006
Methodology- Overall experiment

1. Water saturation;
2. Water flood for tank conditioning (pH, EC, ORP, T)
3. Tank drainage (down to 0.5 m elevation)
4. Model oil injection through all wells present in the tank (up to 1 m elevation)
5. Water flood in order to reach an equilibrium:Remove excess oil in tank
6. Remediation:
 – Slurping
 – Salinity conditionning
 – Micellar flood
 – Micellar+ polymer flood
 – Polymer Flood
7. ISCO (to be planned)
Results - Sand Tank Physical Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soil Surface Area</td>
<td>m²</td>
<td>2.3</td>
</tr>
<tr>
<td>Soil Thickness</td>
<td>m</td>
<td>1.5</td>
</tr>
<tr>
<td>Volume of Soil</td>
<td>m³</td>
<td>3.3</td>
</tr>
<tr>
<td>Mass of Soil</td>
<td>Kg</td>
<td>6540</td>
</tr>
<tr>
<td>Dry Soil Density</td>
<td>Kg/m³</td>
<td>1980</td>
</tr>
<tr>
<td>Total Soil Porosity</td>
<td>-</td>
<td>0.27</td>
</tr>
<tr>
<td>Pore Volume</td>
<td>L/saturated m</td>
<td>620</td>
</tr>
<tr>
<td>d_{50}</td>
<td>1.5 mm (medium sand)</td>
<td></td>
</tr>
<tr>
<td>d_{10}</td>
<td>0.1 mm</td>
<td></td>
</tr>
<tr>
<td>Mineralogy</td>
<td>Mainly Quartz (dominant) + Calcite</td>
<td></td>
</tr>
</tbody>
</table>
Results - Saturated Zone Properties

- Soil hydraulic conductivity: 2×10^{-5} m/s to 8×10^{-5} m/s (slug tests)

- Tracer test (prior to contamination):

 0.7 m^3 injected @ $[\text{Cl}^-] = 1000 \text{ mg/L}$, followed by 1.9 m^3 of water

![Tracer Breakthrough Curve At Extraction Well (PP2)](image)

- Effective porosity = 0.25 ($92\% \times \text{total porosity}$)
- 1 Transport Pore Volume = 660 L
Results - Saturated Zone Properties

- Water elevations and piezometric map under stable conditions (steady-state, $Q_{\text{injection}} = Q_{\text{extraction}}$, $dh = 0.2\,\text{m}$)

![Groundwater flowpath diagram]

[Diagram showing groundwater flowpath with labeled points and values]
Results - Saturated Zone Properties

- Sweep efficiency: analysis of tracer front breakthrough

Arrival of tracer front at MPs as a function of injection volume (m³):

- Mil-level screens (0.6 m elevation)

After injection of 220L (1/3 transport PV)
- 440L (2/3 transport PV)
- 660L (1 transport PV)
Results - Unsaturated Zone Properties

- Volumetric water content profile:

- Aquifer solids
- Water contained in soil pores
- Injected LNAPL displaces air in larger pores
Results- LNAPL recovery by Slurping

- **Operation parameters:**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum Pressure at Extraction Well</td>
<td>(cm water)</td>
<td>-25</td>
</tr>
<tr>
<td>Vacuum Pressure at Pump</td>
<td>(inch Hg)</td>
<td>-22</td>
</tr>
<tr>
<td>Air Extraction Flow Rate</td>
<td>(m3/hr)</td>
<td>9.3</td>
</tr>
<tr>
<td></td>
<td>(scfm)</td>
<td>5.5</td>
</tr>
<tr>
<td>Total Operation Time</td>
<td>(hrs)</td>
<td>4 X 8 hrs</td>
</tr>
<tr>
<td>Volume of Water Injected During Operation</td>
<td>(L)</td>
<td>670 (1 transport VP)</td>
</tr>
</tbody>
</table>
Results - LNAPL recovery by Slurping

- Slurping performance assessment:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNAPL Volume in Soil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>(L)</td>
<td>44</td>
</tr>
<tr>
<td>Final</td>
<td>(L)</td>
<td>27</td>
</tr>
<tr>
<td>Total Volume Removed</td>
<td>(L)</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(39% reduction)</td>
</tr>
<tr>
<td>LNAPL thickness in wells</td>
<td>(cm)</td>
<td>24</td>
</tr>
<tr>
<td>Initial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Final</td>
<td>(cm)</td>
<td>1.6</td>
</tr>
<tr>
<td>Oil Saturation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Initial</td>
<td>(%)</td>
<td>14</td>
</tr>
<tr>
<td>Final</td>
<td>(%)</td>
<td>9</td>
</tr>
</tbody>
</table>
Results - SEAR

- Operation parameters:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Injection Rate</td>
<td>(L/min)</td>
<td>0.24</td>
</tr>
<tr>
<td>Injected Volume</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water + NaCl</td>
<td>(L)</td>
<td>560</td>
</tr>
<tr>
<td>Micellar Solution</td>
<td>(L)</td>
<td>310</td>
</tr>
<tr>
<td>Micellar + Polymer Solution</td>
<td>(L)</td>
<td>310</td>
</tr>
<tr>
<td>Polymer Solution</td>
<td>(L)</td>
<td>760</td>
</tr>
<tr>
<td>Total</td>
<td>(L)</td>
<td>1940</td>
</tr>
<tr>
<td></td>
<td>(days)</td>
<td>6</td>
</tr>
</tbody>
</table>
Results- SEAR

- Samples collected at extraction pump (PP2)
- LNAPL recovery mechanisms observed at extraction well (PP2):
 - Some mobilization ahead of the surfactant solution front;
 - Enhanced solubilization is the main recovery mechanism.
Results - SEAR

- BTEX and surfactant concentration at extraction well (PP2):

Mobilisation

Eff. Porosity = 0.11 (40% x total porosity):
Oil saturation caused A 50% decrease in eff. porosity

[BTEX] drops rapidly behind the Micellar Solution Front: Preferential flow and dilution (underiding of washing solution)

Impact of polymer-induced mobility control
Results - SEAR: [BTEX] inside the tank

After injection of 300 L of washing solution

Preferential flow and dilution (underdraining of washing solution)

Rapidly decreasing [BTEX] after solution breakthrough

Dilution at extraction well
Conclusions

• Overall recovery:
 - Slurping - Mobilised oil 21%
 - Slurping - Volatilised oil 18%
 - Soil Washing (SEAR) 5%
 - Oil Still Trapped in Soil 56%

• Impact of remediation on soil concentrations:
 - Bioslurping: 3500 mg/kg reduction
 - Soil washing: 350 mg/kg reduction

• No significant impact on dissolved flux exiting the treatment area
Conclusions - SEAR

• Seep efficiency was not uniform inside the tank:
 – Effective porosity globally dropped by 50% after oil injection;
 – Dissolution not uniform behind micellar solution front;
 – Preferential flow and under-rinding is suspected (3D effects).

• A total of 2 kg of BTEX was removed by dissolution
 – Equivalent to a 350 mg/kg BTEX reduction in soils
Conclusions

• Pros of laboratory tests in large sand tanks:
 – True test prior to field since 3D effects have a huge impact on remediation performance
 • 1D test (column experiment) overestimated the performance
 – Experimental control over data
 • Mass balance was acheived
 – Reduced costs vs. field pilot study, allows optimisation process

• Room for improvement – other tank tests are planned!
Thank you!