Full-Scale Alkaline Hydrolysis of Organic Explosives in Soil

October 21st, 2010

Ronnie Britto, Ph.D., P.E. – Tetra Tech
Joel Nolin, P.Eng. – Tetra Tech
Presentation Overview

- Explosives at defence sites in North America
- Conventional remediation approaches
- Innovative options
- Successful case histories
- Further applications
Distribution of Explosives Contamination at Defense Facilities

- Organic explosives and their residues prevalent at:
 - army ammunition sites
 - ordnance sites
 - range sites
 - other federal manufacturing and storage facilities

- Predominant organic explosives are
 - trinitrotoluene (TNT)
 - dinitrotoluenes (DNTs), and
 - royal demolition explosive (RDX)
Conventional Remedies for Organic Explosives

- Biological Treatment: Feasible but can be slow and cumbersome

- Chemical Oxidation:
 - Employs application of strong oxidants such as hydrogen peroxide, sodium permanganate, or sodium persulfate,
 - Largely unproven, and
 - Could require repeated applications making the process prohibitively expensive

- Stabilization:
 - Difficult for organic explosives
 - Disposal issues

- Existing limitations call for an innovative approach
Case Study – Site Description

- Volunteer Army Ammunitions Plant
- Government-Owned/Contractor-Operated facility
- Primarily used for the production and storage of TNT
- Built 1941 to 1943 in support of World War II effort, then Korean and Vietnam conflicts; production ceased in 1977
- In addition to extensive nitroaromatics contamination, metals contamination also present resulting from acid production in support of TNT manufacturing.
Innovative Treatment of Explosives

- CMS recommended excavation, stabilization, and offsite disposal for explosives
- Remedial goals required innovation
 - effective treatment of large quantity of soil
 - cost and schedule constraints
- Implemented in-house laboratory bench-scale tests to evaluate chemical treatment using:
 - chemical oxidants (traditional)
 - alkaline hydrolytic and catalytic agents
Alkaline Hydrolysis Process

- Destroys contaminants via nucleophilic substitution
 - Strong nucleophile (hydroxide ion) attacks electrophile
 - Displacement of a leaving (functional) group
- Ring instability and cleavage
- End products such as formate and nitrite/nitrate
Bench-Scale Set-up

- Soil pan studies
- Varying quantities of selected chemical amendments
- Water added to achieve saturation
- Mixing
- Effectiveness sampling included:
 - pH (SW9040) and moisture content
 - Nitrates and nitrites (E300)
 - Explosives (SW8330B)
Results Of Bench-scale Studies

- Bench-scale results indicated:
 - High levels of explosives could be treated rapidly (within a week) using an alkaline hydrolytic agent
 - “Material Balance” indicated complete treatment with no accumulation of organic daughter products
 - Nitrites are the largest identifiable end product (denitrification could be required)
 - Treatment in the field would be feasible and economical
Results Of Bench-scale Studies

BS-8 Trial: Concentration Time Series for Dinitrotoluenes

Note: 2,4DNT Soil Cleanup Level is 25.4 mg/kg.
Results Of Bench-scale Studies

![Graph showing concentration time series for 2,4,6-Trinitrotoluene.](image)

BS-6 Trial: Concentration Time Series for 2,4,6-Trinitrotoluene

- **2,4,6-Trinitrotoluene**
- **Treatment Start Date**

Note: 2,4,6-Trinitrotoluene soil cleanup level is 67 mg/kg.
Denitrification Bench-Scale Study

- Evaluate citric acid as an organic substrate to determine its potential to treat elevated nitrate and nitrite concentrations in soil resulting from chemical destruction of TNT and DNT
 - Citric acid was chosen as the organic substrate because it:
 - serves as a carbon source for denitrification bacteria
 - lowers the pH to neutral conditions

- Estimate the time required for treatment and the kinetics of chemical degradation
Bench-Scale Study – Set-Up

- Two soil pan tests containing approximately 4 kg each of soil from contaminated area
- Phase I – soil pan tests underwent alkaline hydrolysis to remediate the nitroaromatic compounds in soil
- Once treatment was complete (approximately 2 weeks), the denitrification bench-scale began (Phase II)
- Citric acid waste was added to one of the soil pan tests, denoted as BS-A; no citric acid was added to BS-B (control)
- Citric acid was added and mixed using mixing spoons
Bench-Scale Study – Results

- Both test trials showed a substantial decrease in nitroaromatic compounds
 - Total DNT and 2,4,6-TNT exhibited greater than a 99% percent decrease in concentrations over the course of the two-week treatment
- Nitrate was not formed in significant concentrations compared to baseline results indicating very little oxidation from nitrite to nitrate
- Nitrite concentrations decreased from 511 mg/kg to non-detect levels during the first twelve days
- The degradation rate for nitrite was calculated to be 0.292 day⁻¹
Denitrification Study: Results

Graph:
- **Title:** Bench Scale A: Concentration Time Series
- **X-axis:** Time (m/d/yy)
- **Y-axis 1:** Explosives Concentrations (mg/kg)
- **Y-axis 2:** Nitrite Concentrations (mg/kg)
- **Legend:**
 - 2,4-DNT
 - 2,6-DNT
 - 2,4,6-TNT
 - Nitrite
- **Periods:**
 - Explosives Treatment Period
 - Denitrification Treatment Period
- **Dates:**

Analysis:
- The graph shows a decrease in explosives concentrations over time, particularly a significant drop during the Denitrification Treatment Period.
- Nitrite concentrations remain low throughout the depicted time frame.
Denitrification Study: Results

Concentration Time Series for Nitrite

Treatment Start Date 10/22/2007

Time (m/d/y)

Concentration (mg/kg)

Bench-Scale A Bench-Scale B (Control)
Field Pilot Study Results

- 230 m³ excavated soil in bermed area (~ 30 m by 15 m)
- Designed amounts of alkaline agent and catalyst
- Implemented mixing, moisture, monitoring, and evaluation

<table>
<thead>
<tr>
<th>COC</th>
<th>Baseline (July 31, 2007)</th>
<th>August 6, 2007 (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,3,5-TNB</td>
<td>5</td>
<td>0.066</td>
</tr>
<tr>
<td>2,4-DNT</td>
<td>800</td>
<td>1.6</td>
</tr>
<tr>
<td>2,6-DNT</td>
<td>12</td>
<td>1.5</td>
</tr>
<tr>
<td>2,4,6-TNT</td>
<td>230</td>
<td>0.64</td>
</tr>
<tr>
<td>Amino-DNTs</td>
<td>ND</td>
<td>0.82</td>
</tr>
<tr>
<td>Nitrotoluenes</td>
<td>ND</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Field Pilot Study
Full-Scale Treatment

- Full Scale Ex Situ Treatment
 - Soils excavated and treated within asphalt-lined pond
 - 230 m³ increments
 - Alkaline and catalytic reagents evenly spread
 - Conventional construction equipment
 - In-house moisture and mixing design
 - pH – primary indicator for uniform physical and chemical mixing of chemicals
Full-Scale Treatment
Full-Scale Treatment

- **Full Scale Ex Situ Treatment Results**
 - 86,000 m3 (ex situ) completed treatment (100%)
 - 70 tonnes total nitroaromatic mass removed (>94%)
 - Treated soils below cleanup targets for DNT (25.4 mg/kg)
 - 42% < 2.54 mg/kg for 2,4-DNT (20x rule)
 - Average 2,4-DNT in remaining piles 6.9 mg/kg

- Technology has been examined for groundwater
Full-Scale Treatment

- Remaining contaminated soils were treated in situ
- Results indicate in situ treatment is effective and comparable to ex situ treatment
- To date, 11,500 m³ of contaminated soil has been successfully treated in situ – site has been closed
Second Case Study

- Over 13,000 m³ of soil treated
- Summer 2008 – successful demonstration of bench-scale, pilot-scale, and currently full-scale using our technology experience at VOAAP
- July – October 2009 – completed and confirmed the treatment of soil in one season
High TNT Concentration
604 KG of TNT destroyed in 21 days
High RDX Concentration
113 KG of RDX destroyed in 5 days
Applications

- Can be applied to other sites
- In-situ vadose zone and saturated zone applications
- Variety of alkaline hydrolytic agents
- Range of application/mixing regimes
- Application in colder environments
- Application to other contaminants
- Presence of co-contaminants
Questions