Presentation

Advanced In Situ Remediation Technologies in The Netherlands

Yvo M.M. Veenis
Managing Director Groundwater Technology BV
Yve@gtbv.nl
www.gtbv.nl
Introduction

Three Topics

1. Historical Overview
 - In Situ Remediation in The Netherlands
2. Site Soil Management
 - Interlinked with technology
3. Technologies
 - Phased & multi/technology implementation
 - Chemically enhanced degradation
 - Heat enhanced extraction
<table>
<thead>
<tr>
<th>Period</th>
<th>Events</th>
</tr>
</thead>
</table>
| <1970 | 1875: Nuisance Act
 | 1928: Natural Beauty Act |
 | 1979: Lekkerkerk |
 | 1986: Soil Protection Act (calls for remediation-to-natural-background, fixed concentrations) |
| 1990 – 2000 | 1993: Mandatory Assessment Industrial Sites
 | Assessment results may lead to remediation
 | 1997: Change of policy-implementation: pragmatic risk & cost based remediation |
| 2000 - present | 2001: Pragmatic approach implemented in guide lines
 | Number of authorities from 16 to 50+
 | 2003: Soil Protection Act (revised), implementing pragmatism |
Lessons learned

• Initial legislation was far too strict: clean-up levels unattainable at reasonable costs => remediation delayed. Typically, only excavation could achieve results

• Pragmatic implementation: opportunities for in situ, but closure criteria not pre-negotiable

• Pragmatic legislation: maximum ‘return on investment

• The most mobile factor in soil contamination is legislation
Site:
Medium size refinery, > 100 hectares
Started on pristine land
50+ years of operation
Significant ‘buried treasures’
Costs of full remediation: economically suicidal
<table>
<thead>
<tr>
<th>Layer</th>
<th>Top Elevation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>+5 msl</td>
<td>Made ground</td>
</tr>
<tr>
<td>L2</td>
<td>0 msl</td>
<td>Clay, old grade level</td>
</tr>
<tr>
<td>L3</td>
<td>-2 msl</td>
<td>Sand, silt & clay</td>
</tr>
<tr>
<td>L4</td>
<td>-12 msl</td>
<td>Silt & Clay</td>
</tr>
<tr>
<td>L5</td>
<td>-15 msl</td>
<td>Sand, silt & clay</td>
</tr>
<tr>
<td>L6</td>
<td>-23 msl</td>
<td>Peat & Clay, basis of Holocene</td>
</tr>
<tr>
<td>L7</td>
<td>-25 msl</td>
<td>First Aquifer (sand)</td>
</tr>
</tbody>
</table>
Site Soil Management Plan

Covers three levels:

• Agreement on Strategic approach next decades
• Live Atlas

• Implementation Plan for:
 • Shallow Soil Remediation
 • Containment deeper mobile contamination
 • Monitoring deep contamination
 • Procedures for future issues
 • Internal contaminated soil management
Implementation Plan for:

- Procedures for future issues
 - Dealing with new spills
 - Define risk-based approach to set future remediation goals

- Shallow Soil Remediation
 - Active remediation (in situ/ex situ)
 - Co-ordinate with (future) developments

- Internal contaminated soil management
 - Dealing with health & safety issues (dig-safe procedures)
 - On site Soil treatment (Biopile)
Implementation Plan for:

• Containment deeper mobile contamination
 • Monitored Natural Attenuation where possible
 • Active In Situ remediation where necessary

• Monitoring deep contamination
 • Monitored Natural Attenuation only

• Long term possibility:
 • Development of regional deep soil management entity
 • Overlapping multi source/multi site/multi ‘owner’ issues
 • Region-wide groundwater contamination
Technologies:

• New releases
 • Excavation where possible (within hours)
 • Active In Situ remediation

• Shallow
 • Excavate when redeveloped
 • In situ when moving off-site

• Deep:
 • Exploite nature’s remediation capacity
 • MNA
1. Massive benzene spill (600 m³)
2. Spill response
3. Heat Enhanced Remediation
Case Benzene spill

Spill of 600 m3 Benzene floods tank pit in just 2 hours at 18:00 hours.

- Disaster Plan put in action
- Regular operations terminated
- Explosion & High Exposure risks
Case
Benzene spill

Immediate Actions:

• Blanket area with triple-F foam
• Recover free standing product
• Cover Soil with sheeting
• In Situ remediation install started (operational in 2 weeks)
Case

Benzene spill

Technologies used:

• > 100 well High-vacuum multi-phase extraction (vapour, product & water)
• Biodegradation
• Vapour treatment via site vapour recovery unit.
• Enhanced Natural Attenuation (oxygen (gas), perchlorate & nutrients)
Results

Benzene spill

Initial 13 months
Results:

• 2 days: operations restored
• 2 weeks: remediation started
• 2 years: 99.something% of mass removed (residual mass < 500 kg)
• Enhanced Natural Attenuation (oxygen (gas), perchlorate & nutrients) to remove residual traces
Case
Leaking tank

- Tank bottom membrane failed
- Product spilled into tank mound, LNAPL on groundwater under tank
- Flamable & Toxic

Solution:
- Fix tank bottom membrane and operate tank
- Install remediation system underneath
- Operate (lump-sum-to-closure)
Case
Leaking tank
Results:

• Operations without incident

• After nine months: concentrations in extraction system and in soil & groundwater next to tank below detection

• Project closure applied for 7 months ahead of schedule

• (formal closure anticipated in a few months)
Case Leaking tank

Technologies used:

• Hi-vac, multi-phase extraction (extraction of vapours: promotes volitilization, enhancing biodegradation; extraction of liquids

• Gas/liquid separation

• No-dig installation under operating tank

• Liquid: Oil/water separation: water to site sewer system

• Catox vapour treatment
1. Diesel Fuel at Storage Depot
 - At start: free product
 - 4 months operation medium temperature, 2 months hot
 - After 6 months: 10,000 kg removed; residual TPG in soil < 750 mg/kg
 (<560 ug/l in groundwater)

2. Creosote L/DNAPL at railroad sleeper yard
 - At start: free product
 - 1 month Pump & Treat: <0.3 kg removed
 - 1 month heat enhanced remediation: 3000 kg removed

3. Gasoil (diesel type) at storage facility
 - At start: free product (>1 m in wells)
 - 2 months heat enhanced remediation: > 2500 kg removed
 - No detectable residual contamination
System Lay-out
Creosote L/DNAPL

injection point

injection point
Pilot project:

- 1 month pump & treat: 0.3 kg product removed (dissolved phase)
- 1 week steam injection: entire test area hot
- 1 month steam injection: 3000 kg removed
- Residual concentrations not determined
LATEST ‘Hot and Cooking’

Issue:

• Site (source zone 200 * 50 m, 5 m deep) contaminated with chlorinateds, non-chlorinateds, pesticides and other assorted nastinesses . . .

• Concentrations in soil: sky high, concentration of water in product < 50%

• Site in use as loading facility major chemical distributor

• Window of opportunity to install remediation scheme (three small areas accessible)

• Remediation technology unknown (but system must be capable of pump & treat, sparging, hi-vac extraction, ISCO, Enhanced anaerobic degradation, heat-enhanced extraction and must remain operational for minimum 15 years)
Our Solution:

• Horizontal wells, 5 lengths of 200 m each

• Wells & casing custom built from INOX 18/10 steel, 100 mm diameter, 0.2 mm continuous slot, in 6 m sections

• Installed in horizontal, directionally controlled borings

• Borings installed underneath fully operational facility, navigating through a maze of concrete vertical pilings

• Borings used BioBore as supporting mud. Spent Biobiore (not re-used) contained > 1,000,000 ug/l chlorinateds.
Groundwater Technology is interested to discuss opportunities for working together with one or more Canadian firms.