Removing hydrocarbons from soil more cost effectively than other conventional thermal technologies is now further enhanced when you can create viable recycling alternatives.
Executive Summary

- Remove the Hydro-Carbons
- Look at recovering the gases VS burning them
- Take soils that have metals and salts add the required additives to create benign bricks
- The blending of these two technologies has the potential to address cost, speed and future liability
- Regulatory framework is questionable
The most common methods of remediation have historically involved contaminant transfer (landfill, landfarm, injection).

Thermal Desorption is a long proven method of “insitu” remediation which is proven more expensive than the most conventional methods of contaminant transfer.

Is industry motivated to pay a premium for a cleaner result?
The Project

- Phase One
 - To remove and collect liquids from contaminated soil for recycling
 - To collect operational data to provide real hard cost data
 - To verify and refine process flow with different contaminated soil profiles
 - To look closely at the viability of gas recovery
The Project

- **Phase Two**
- To determine cooling process, rehydration requirements and timeline required to create bricks
- To determine additives required for different soil profiles
- To test the structural integrity of the bricks (compression and shear)
- To emboss the bricks for tracking purposes
Operational Issues

- Characteristics of the Target Soil
 - *Coarse VS Fine Soils*
 - *Screening soils*
 - *Moisture Levels*
 - *Clay and wet soils work but slow the process*
 - *Distribution of Hydrocarbon Content*
 - *Spikes are not a concern due to the camber design*
 - *Co-contaminant Levels*
 - *Wash cycle and tank afford a second / third process stage for added treatment(s)*
Inventors & Partners

- Mr. Earl Gingras, Inventor/Operator,
- Mr. Jim Kuhnen, Steel Fabrication and Design,
- Dr. Norman Arrison, P.Eng., Ph.D., M.Sc., B.Sc. our resident scientist.
 Forecasting Outcomes

- Soils – Thermal processing can be simulated in a lab retort test
- Gases – Introducing additives during the water wash cycle may change the exhaust gas from the heat chamber
- Construction Bricks
Operating Costs

- Soil Profile & Costs
- Variable Costs
 - Fuel consumption for cogeneration of heat
 - Filter media (5 and 0.3 Micron)
 - Water required to rehydrate soil
- Recovery / Offsetting of Costs
 - Hydrocarbon liquids
 - Bricks
The Technologies

- KAG–1000 Performance
 - Heat Generation
 - Cooling & Condensing
 - Gases
 - Liquid & Soils
 - Gas Collection
 - Liquids Collection
 - Air Emissions
The Technologies

- KAG–1000 Performance
 - Heat Generation
 - *Soil is sorted*
 - *Cooling & Condensing*
 - Gases
 - *Liquid & Soils*
 - Gas Collection
 - Liquids Collection
 - Air Emissions

Independently controlled electric elements and hot exhaust gases from the self contained electric generation unit.
The Technologies

- KAG–1000 Performance
 - Heat Generation
 - Soil is sorted
 - Cooling & Condensing Gases
 - Liquid & Soils
 - Gas Collection
 - Liquids Collection
 - Air Emissions

KAG sorts materials prior to moving soils into the heat chamber.
The Technologies

- KAG–1000 Performance
 - Heat Generation
 - Soil is sorted
 - Cooling & Condensing
 - Gases
 - Liquid & Soils
 - Gas Collection
 - Liquids Collection
 - Air Emissions

Adding water to the gases brings gases to near ambient at the tank.
The Technologies

- KAG–1000 Performance
 - Heat Generation
 - Soil is sorted
 - Cooling & Condensing Gas
 - Liquid & Soils
 - Gas Collection
 - Liquids Collection
 - Air Emissions

The exhaust gas from the chamber is transferred to the tank to condensed into a recyclable liquid.
The Technologies

- KAG–1000 Performance
 - Heat Generation
 - Soil is sorted
 - Cooling & Condensing
 - Gases
 - Liquid & Soils
 - Gas Collection
 - Liquids Collection
 - Air Emissions

<table>
<thead>
<tr>
<th>Emissions</th>
<th>VOC expressed by speciation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total VOC's</td>
</tr>
<tr>
<td></td>
<td>mg/m³ wet</td>
</tr>
<tr>
<td></td>
<td>grams/hr</td>
</tr>
</tbody>
</table>
The Technologies

- Earth Brick Performance
 - Supply Auger
 - Screening Hopper
 - Additives Mixer
 - Chamber Auger
 - Ram