Integrated Strategy to stimulate application of *in-situ* remediation approaches

Hans van Duijne

Geological Survey of The Netherlands

TNO Built Environment and Geosciences
Subsurface and Groundwater
The Netherlands

RemTech 2007, Banff, Canada
October 24-26, 2007
Contaminated sites in The Netherlands per municipality - 2005

Area: 42,000 km²
Population density: 481 persons/km²
Gas Works Facility (1962)
Number of Potentially Contaminated Sites per Municipality 2005

- Total Surface: 41,526 km²
- 600,000 sites are suspected of soil pollution
- 58,000 need remediation
- 12,000 urgent remediation (< 2015)

Soil and Groundwater Remediation: More than just technologies

Budget NL 0,5 B€/yr

Non-sustainable Innovation Sustainable

Crisis ’70 – ‘80

Conventional clean up Technology Sustainable Management

+ in-situ + MNA +

Policy Single sites Mega sites

Costs B€

Time Required to implement

1995 1997 1999 2001 2003

2015

WFD National

RemTech 2007, Canada; hans.vanduijne@tno.nl
Brief History

Lekkerkerk 1980

<1980

• No soil policy
• No funding
• No awareness

>1980

• Legislation
• Inventarisation of the problem
• Remediation
• Soil Contamination perceived as risk

• 1983 Soil Remediation Law
• 1995 Soil Remediation in Soil Protection Law
• 2005 New Policy in Soil Protection Law
• 2007 New Policy in Soil Protection Law

RemTech 2007, Canada; hans.vanduijne@tno.nl
Lack of confidence in-situ remediation technologies

- In-situ techniques not fully matured
- In-situ techniques insufficiently demonstrated in back yard
- No standardized approach to remediate common situations

- Mind set of competent authority/regulators lacks confidence in in-situ techniques:
 - “Outcome uncertain and risks difficult to manage”
 - Insufficient flexibility to deal with risks and uncertainties
 - Processes (authorisations etc.) with soil remediation too complex (many stakeholders, red tape)
 - Lack of knowledge and experience at daily practice level
Why Holland In-situ Program (HIP)?

Growing attention in (sub-)urban brownfields to:
- Provide building space in a densely populated area
- 600,000 contaminated sites, 90% in urban environment

- Ministry of Environment adjusted its policy for the soil remediation plan until 2030
 - Adopting risk based approach: only the “immediate risk” sites to be remediated
 - Risk driven clean-up plan:
 - 15,000 high priority risk sites, in 10 years
 - 60,000 risk carrying sites, in 30 years
- Shallow contamination needs to be remediated;
 - Targets made flexible (land use, costs and risks)
 - Industrial sector oriented programs
 - From 900 to 2000 sites/yr remediated
Innovation added to full scale projects

- Duration 3 years (2007-2010), 24 in-situ projects,
- 10 contracting firms with financial contribution
- Biological-, physical-, and chemical technologies and combinations
- Development of standardized in-situ technologies for situations with a high occurrence (a high repetition factor, low costs, good market position)
- Process pilots
- Decision support tool - Soilection
Towards standardized reliable and accepted in-situ technologies: the “Holland In Situ Demo” project (HIP).

<table>
<thead>
<tr>
<th>Site Characteristics</th>
<th>Occurrence (% of total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contaminant type (C)</td>
<td></td>
</tr>
<tr>
<td>C.1 Chlorinated Hydrocarbons</td>
<td>45</td>
</tr>
<tr>
<td>C.2 Aromatics/Oil/MTBE/Cyanide</td>
<td>45</td>
</tr>
<tr>
<td>C.3 Other</td>
<td>10</td>
</tr>
<tr>
<td>Geo-hydrology (G)</td>
<td></td>
</tr>
<tr>
<td>G.1 Permeable (sandy)</td>
<td>45</td>
</tr>
<tr>
<td>G.2 Layered, permeable and impermeable layers</td>
<td>45</td>
</tr>
<tr>
<td>G.3 Other</td>
<td>10</td>
</tr>
<tr>
<td>Built Environment (B)</td>
<td></td>
</tr>
<tr>
<td>B.1 Urban</td>
<td>70</td>
</tr>
<tr>
<td>B.2 Industrial</td>
<td>25</td>
</tr>
<tr>
<td>B.3 Other</td>
<td>5</td>
</tr>
</tbody>
</table>
HIP technical pilots

• In situ bioremediation of a creasote contaminated site by DNAPL extraction and stimulated biodegradation

• Example of a suite of in situ technologies at a dry-cleaning contaminated site in the Netherlands

• Monitoring enhanced anaerobic bioremediation at contaminated sites in the Netherlands; The use of specific monitoring tools
Mega Site Approach – Rotterdam project

In-Situ Remediation Approach

Contaminant Source → Plume → Receptor

Remediation Approach
- Cost-effective technologies
- Split source and plume remediation

Figure 4.2. Classical contaminant conceptual model.

Chapter 4 – p. 5

RemTech 2007, Canada; hans.vanduijne@tno.nl
Integrated Management Strategy

1. Identifying Risks (Site Characterization + Risk Assessment)
2. Determining the degree of contamination removal required
3. Calculation of necessary investments
4. Selection of most cost effective scenario

Possible Significant Effects on GWQ; time frame, 2020-2060. Contribution NA??

Significant Effects on GWQ; time frame, 2005-2040

No significant Effects on SWQ
3rd plane of compliance
Regional Groundwater flow
2030: Chance of exceeding intervention value at 3rd Plane of Compliance
Autonomous scenario (impact on POC 3)
Scenarios for effect of risk management measures (e.g. source removal, NA, Isolation)

Effect of scenario A
(impact on 3rd plane of compliance)

- **Scenarios**
 - **Autonomous**
 - **Scenario A**

Active measures start in 2005

17.5 M€/y

% of length impacted above I-value

RemTech 2007, Canada; hans.vanduijne@tno.nl
Soil and Groundwater Remediation: More than just technologies

Budget NL 0,5 B€/yr

Time Required to implement

1995 1997 1999 2001 2003

Non-sustainable

Innovation

Sustainable

Conventional clean up

Technology

Sustainable Management

Policy Single sites Mega sites

 costs B€

Crisis ’70 – ‘80

WFD National

RemTech 2007, Canada; hans.vanduijne@tno.nl