Remtech2006

Novel Activation Technologies for Sodium Persulfate

In Situ Chemical Oxidation

Frank Sessa
FMC Corporation
Philadelphia, PA

Dalbir Sethi
FMC Corporation
Philadelphia, PA

Jean Pare
ChemCo
Quebec, CA
Persulfate Oxidation Chemistry

Strong Oxidizer

Persulfate anion:

\[\text{S}_2\text{O}_8^{2-} + 2\text{H}^+ + 2\text{e}^- \rightarrow 2\text{HSO}_4^{-2} \]

\[E^0 = 2.12 \text{ v} \]

In Comparison:

- \(\text{H}_2\text{O}_2 \) \(E^0 = 1.8 \text{ v} \)
- \(\text{OH}^{-} \) \(E^0 = 2.7 \text{ v} \)
- \(\text{MnO}_4^{-} \) \(E^0 = 1.7 \text{ v} \)

Sulfate radical:

\[\text{SO}_4^{\cdot-} + \text{e}^- \rightarrow \text{SO}_4^{2-} \]

\[E^0 = \sim 2.6 \text{ v} \]

Simplified Reaction

Persulfate + CoC → CO\(_2\) + H\(_2\)O

kinetically slow

need to activate
Conventional Persulfate Activation

Heat

\[S_{2}O_{8}^{2-} + \text{heat} \rightarrow 2 \text{SO}_{4}^{2-} \]

Compounds with > 90% Decomposition Treat with Persulfate

<table>
<thead>
<tr>
<th>20 ºC</th>
<th>35 ºC</th>
<th>45 ºC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toluene</td>
<td>Benzene</td>
<td>1,1,1-TCA</td>
</tr>
<tr>
<td>Ethylbenzene</td>
<td>Chlorobenzene</td>
<td>Chloroform</td>
</tr>
<tr>
<td>Xylene</td>
<td>1,2-DCE</td>
<td>Methylene Chloride</td>
</tr>
<tr>
<td>1,1-DCE</td>
<td>PCE</td>
<td></td>
</tr>
<tr>
<td>1,2-Dichlorobenzene</td>
<td>TCE</td>
<td></td>
</tr>
<tr>
<td>1,3-Dichlorobenzene</td>
<td>1,1-DCA</td>
<td></td>
</tr>
<tr>
<td>1,2,4-Trichlorobenzene</td>
<td>1,2-DCA</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MTBE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vinyl Chloride</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Carbon Tetrachloride</td>
<td></td>
</tr>
</tbody>
</table>

Aqueous solutions - lab data; 72 hour

- **Advantage:** will oxidize all compounds of concern given enough thermal input
- **Disadvantage:** may be costly to apply in field applications
Conventional Persulfate Activation

Transition Metal Catalysis

\[\text{S}_2\text{O}_8^{2-} + \text{M}^{2+} \rightarrow \text{M}^{3+} + \text{SO}_4^{2-} + \text{SO}_4^{•} \]

- **Advantage:**
 - BTEX
 - Chlorinated Ethenes
 - Chlorobenzenes
 - MTBE

- **Disadvantage:** precipitation of \(\text{Fe(OH)}_3 \) reduces availability of catalyst

Aqueous
Room temp
100 mg Fe / L
2.5% persulfate
21 days

control
persulfate @ pH 8
persulfate + Fe(II) @ pH 8
persulfate + Fe(II) @ pH 2

Remtech2006
Novel Persulfate Activation

Targets for Novel Technologies:

- Easy to apply in a variety of subsurface conditions
- Transportable in a groundwater system
- Increased reactivity of persulfate with a broad range of organic contaminants

- Chelated metal catalysts
- Hydrogen peroxide activation
- High pH activation
Novel Persulfate Activation

Chelated Metal Catalysts

- enhance solubility and transportability in groundwater
- combinations of di- or tri-valent metals with chelants

Examples:

Fe (II) → EDTA
Fe (III) → Citrate, Catechol, Polyphosphate, Glycolic acid, NTA, THQ
Novel Persulfate Activation

Chelated Metal Catalysts

- **Advantages:** improved performance at neutral pH’s on chlorinated ethenes, BTEX, chlorobenzenes and oxygenates

- **Disadvantages:** not effective on chlorinated ethanes or methanes

Remtech2006
Novel Persulfate Activation

Hydrogen Peroxide Activation

$S_{2}O_{8}^{2-} + H_{2}O_{2} \rightarrow SO_{4}^{+} + 2OH^{*}$

- multi-radical attack
- removal of SOD by peroxide

<table>
<thead>
<tr>
<th>Contaminant (mg/L)</th>
<th>Time 0</th>
<th>Day 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-DCE</td>
<td>4.5</td>
<td>0.1</td>
</tr>
<tr>
<td>TCE</td>
<td>2.8</td>
<td>Non Detectable</td>
</tr>
<tr>
<td>1,1-DCA</td>
<td>1.1</td>
<td>Non Detectable</td>
</tr>
<tr>
<td>1,1-TCA</td>
<td>12.0</td>
<td>0.6</td>
</tr>
</tbody>
</table>

Degradation of Contaminants with Persulfate + Peroxide

- Room temp
- Aqueous soln
- 2 g persulfate
- 8 mL 12.5% H2O2
- 100 g of solution

Data from ORIN RT

Remtech2006
Remtech2006

Novel Persulfate Activation

Hydrogen Peroxide Activation

Oxidation of MGP Residuals

- **T=0**
- **T=14 Control**
- **T=14 Persulfate**

Data from ERM

400 g soil from MGP site
1.08 L distilled water
1.5 g/L sodium persulfate
120 mL of 50% peroxide

VOC’s: BTEX, styrene
SVOC’s: 3 – 5 ring PAHs
DCPD: dicyclopentadiene

Remtech2006
Novel Persulfate Activation

Hydrogen Peroxide Activation

Decomposition of Contaminants by Persulfate + Peroxide

- Advantages: broad applicability including chlorinated ethanes and methanes

Room temp
300 mL water
150 g soil
(KMnO4 SOD 9 – 13 g / kg)

5 g/L sodium persulfate
50 g 17.5% peroxide
Novel Persulfate Activation

Alkaline Activation
• pH > 10

Effect of KOH Ratio on Persulfate Reactivity

Room temperature
Aqueous solutions
7 days
25 g/L sodium persulfate
KOH as pH modifier
Analyzed by GC-MS
Novel Persulfate Activation

Alkaline Activation

Decomposition of Contaminants by Alkaline Activation

- **Advantages:** broad applicability including chlorinated ethanes and methanes

Room temp
300 mL water
150 g soil
(KMnO4 SOD 9 – 13 g / kg)
5 g/L sodium persulfate
0.01 mol / L KOH

pH drifted down, added additional KOH
Selection of Activation Technology

Efficacy Matrix

<table>
<thead>
<tr>
<th>Technology</th>
<th>BTEX</th>
<th>chlorinated ethenes</th>
<th>chlorinated ethanes</th>
<th>MTBE</th>
<th>PCB</th>
<th>1,4-dioxane</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un-activated Sodium Persulfate</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr>
<td>Sodium Persulfate + Fe(II)</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
</tr>
<tr>
<td>Sodium Persulfate + Heat</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr>
<td>Persulfate with Chelated Metals</td>
<td>Y</td>
<td>Y</td>
<td>N</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
</tr>
<tr>
<td>Persulfate with Hydrogen Peroxide Activation</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>?</td>
<td>Y</td>
</tr>
<tr>
<td>Persulfate with Alkaline Activation</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
</tbody>
</table>
Selection of Activation Technology

Are Contaminants Only BTEX?

- Yes: Evaluate Persulfate
- No: Only BTEX & MTBE?
 - Yes: Evaluate Klozur™ Chelant
 - No: Are there CVOCs?
 - Yes: Are CVOCs Cl-Ethanes Cl-Methanes?
 - Yes: Evaluate Klozur™ Peroxide
 - No: Permeable Soils?
 - No: (e.g., PAHs, Styrene, 1,4-Dioxane, etc.)

Mild Oxidation

Strong Oxidation

Evaluate 1. Klozur™ Peroxide
2. Klozur™ Alkaline
3. heated persulfate

Evaluate Klozur™ Alkaline

Evaluate Klozur™ Alkaline

Remtech2006
Acknowledgements

• Richard Brown ERM
• Linda Osborne FMC
• Scott Steffl FMC
• Larry Kinsman Orin RT