ENHANCED NATURAL REMOVAL OF CYANIDE AND AMMONIA IN TAILINGS LAKE AND ZONE 2 PIT LAKE AT COLOMAC, NWT

REMTECH 2006

by

Bill Coedy & Ken Ashley
ACKNOWLEDGEMENTS

Scientific Interpretation
John Chapman Roger Pieters
Susan Watson Greg Lawrence
Hedy Kling Stephen Shultz
Ken Hall Anne Wilson

Managerial Support
James Edwards (INAC), Dave Bynski (PWGSC)
ACKNOWLEDGEMENTS

Technical Assistance:
Dillon Consultants (Yellowknife)
Tli Cho Logistics
Dean Holman, Judy Mah, Regan Fielding

Laboratory Analysis:
ALS Environmental
Taiga Environmental
PRESENTATION OVERVIEW

- Treatment Of Mine Water At Colomac
- Description of Monitoring Programs
- Results & Treatment Evaluation for Tailings Lake and Zone 2 Pit
HISTORY

- 1990 Mine operations begin
- 1997 Ore processing & milling ceases
- 1999 Water transfers begin
- 1999 INAC assumes responsibility of abandoned site
- 2001 Construction of diversion ditches begins
- 2002 Water treatment begins
- 2004 Remediation Plan approved by MWL&W Board
ISSUES

• Water Management
 Tailings Lake expected to exceed licenced freeboard limit by 2006

• Water Quality
 Natural degradation of cyanide and related compounds insufficient
- Add phosphate for ENR
 2002: 11 tonnes of MAP
 2003: 9 tonnes of MAP
- Divert runoff to increase storage time
- Discharge Fuscum Lake annually
- First discharge of TLk via north spillway: 2008 - 2009
WATER TRANSFER 1999 – 2002

3.4 M m³ from TLk to Z2P
Diversion Ditches
Construction 2001 to 2004
WATER TREATMENT OPTIONS

Enhanced Natural Removal (ENR)

- Preferred Option
- Phosphorus Deficient
- Bench Scale Tests

Pilot Plant

- Alkaline Chlorination
- Rotating Biological Contactor
ENR LAB BENCH TEST Oct 2001
MAP fertilizer on melting ice
Staging of MAP
PHOSPHATE ADDED BY HELICOPTER AT BREAKUP
Zone 2.0 Pit Water Treatment & Management Strategy

- Add phosphate for ENR

 2002: 22 tonnes of MAP
 2003: 9 tonnes of MAP

- If required, induce artificial circulation in 2006

- Reach regulated level in 2011
 Seepage to Baton 2014
Colomac Technical Advisory Committee
ENR Monitoring Program

• **Physical**: lake limnology

 (depth profiles – Temp, DO)

• **Biological**: algae identification, biomass and diversity

• **Chemical**: major ions, nutrients, metals

 targets: cyanide, ammonia
Challenges - TCA is filling up; water is of unacceptable quality; exposed tailings.

North Station

Middle Station

Tailings Lake
Zone 2 Pit Sample Locations

- Z2P-S
- Z2P-NW

Pieter’s Monitoring Raft
Twice under ice

Monthly open water
Dissolved Oxygen % vrs Depth TLK 2005

Physical Monitoring indicated:

- lake stratifies in summer:
 - active, warm, oxygenated epilimnion
 - cold, anoxic hypolimnion
- strong wind can overturn or cause mixing
- Mixing is important to supply P to the surface where it is needed for SCN & NH$_3$-N removal
- lake is anoxic in winter
Biological Monitoring Component

- Physical changes in water – colour, clarity
- Algal productivity levels (biomass)
- Algae identification & diversification
Predominant algal assemblage in TLK 2003-04 (typical of wastewaters)

- small flagellate and colonial Chlorophyta (top row)
- large heterotrophic flagellates (left)

Cryptophyte dominated 2005
Similar biomass range

Predominated by green algae

2005 increase in flagellates (Cryptomonads)
TLK-M
MICROZOOPLANKTON & HETEROTROPHS

→ LOWER ABUNDANCE IN 2005
First Appearance of Macrozooplankton in 2005

Daphnia pulex

Cyclops vernalis
Monitoring Water Chemistry

Monthly sampling of the water column indicated:

• Trends in contaminant removal from season to season

• Greatest removal rates related to biological activity in the epilimnion (above thermocline layer)
THIOCYANATE REMOVAL in TLK

Thiocyanate (mg/L)

Epilimnion Thiocyanate
Hypolimnion Thiocyanate

SCN mg/L
THIOCYANATE REMOVAL

\[\text{SCN}^- + 2\text{H}_2\text{O} + \frac{5}{2}\text{O}_2 \rightarrow \text{SO}_4^{2-} + \text{HCO}_3^- + \text{NH}_3 \]

Biological oxidation
Produces ammonia
AMMONIA REMOVAL in TLK

Epilimnion
Hypolimnion

5 mg/L license limit

Indian and Northern Affairs Canada
Affaires indiennes et du Nord Canada
AMMONIA-N REMOVAL MECHANISMS

1) DIRECT UPTAKE BY ALGAE

2) MICROBIOLOGICAL NITRIFICATION

\[\text{NH}_4^+ + \frac{3}{2} \text{O}_2 \rightarrow 2\text{H}^+ + \text{H}_2\text{O} + \text{NO}_2^- \]

\[\text{NO}_2^- + \frac{1}{2} \text{O}_2 \rightarrow \text{NO}_3^- \]

3) MICROBIOLOGICAL DENITRIFICATION (anoxic)
Nitrate to nitrogen gas
Nutrient Recycling At Bottom 2m of TLk
Sedi trap
Recovery
SEDIMENT TRAP RESULTS

Nutrient Removal From Sedimentation in TLk

- Tot-N
- Tot-P
- VSS (%)

2004
2005

Tonnes

Values for 2004 and 2005 are shown in the bar chart.
Removal Of Total Phosphorus - TLk

- Licence 2008: 0.22
- MAP additions

Graph showing TP mg/L from Jul-01 to Sep-06.
Removal Of Total Metals - TLk

TCu ug/L
TAs ug/L

As 40
Cu 10
Tailings Lake Discharge to North Wetlands

Discharge channel

L Shaped Lake

2004.10.07
SUMMARY FOR TAILINGS LAKE

• ENR with P addition + Water Management was an cost effective and low risk treatment

• Water Quality of Tailings Lake has improved to within licence limits established for discharge in 2008/09
NEXT STEPS for TLk

- Continue to monitor ENR process until discharge in 2008/09
- If necessary, supply depleted phosphorus to active algae layer from lake bottom with a pumping system
- Modify the Tailings Lake discharge wetland to optimize wetland treatment and attenuation
Zone 2 Pit - OVERVIEW

ENR process
Zone 2 Pit morphology and limnology
Artificial circulation option
Design of Zone 2 Pit destratification system
Preliminary results
Next steps
COMPARISON OF TREATED LAKES

Tailings Lake

- 75%
- 12 m deep
- 4 M m3 volume

TLk mixes completely

Zone 2 Pit

- 20%
- 105 m deep
- 7.9 M m3 volume

Z2Pit does not mix
SURFACE BLOOM IN ZONE 2 PIT
ALGAL BIOMASS & MAJOR TAXA 2004-05

Green algae

flagellates (Dinophyta)
ZONE 2 PIT - ISSUES

• SCN and NH$_3$-N remain despite ENR
• Z2P water elevation predicted to reach Baton Lake level in 2011
• Action required if water quality not suitable when Z2P reaches 0.5 m within Baton Lake
Zone 2 Pit Morphology & Limnology

- high depth to length ratio (15.7 ha)
- occurrence of relatively saline water
- lack of natural outlet (220 years retention time)
- protection from prevailing winds
- sampling data indicate the Pit rarely mixes below 50 m, usually ~ 22 m
- no oxygen in lower layers, high concentrations of ammonia and thiocyanate
- Under-ice circulation driven by salt freeze-out
Depth profiles of SCN from Z2PNW Stn 2005

![Graph showing depth profiles of SCN from Z2PNW Stn 2005.](image-url)
Hardware Of Artificial Circulation System
Colomac Zone 2 Pit, NWT Artificial Circulation System for Water Quality Remediation

Compressed Air Destratification System
Diffusers set at 60 m depth

Baton Lake
INSTALLATION OF DIFFUSER INTO RAFT

CHECKING FOR LEAKS IN THE HOSE SECTION JOINS.
Circulation System in Zone 2 Pit

S Diffuser Raft

NW Diffuser Raft

Pieter’s Monitoring Raft

BATON LAKE
Startup – July 12 – Both Diffusers
22 DAYS AFTER STARTUP
Zone 2 Pit Sonar Transect

Figure 6 Raw sounder transect east to west past south diffuser raft

<3m to raft
Preliminary Results

- Temperature
- % Dissolved Oxygen saturation
- SCN
- NH$_3$-N
- NO$_3$-N
Temperature from dataloggers stationed at Pieters Monitoring Raft 2005
Figure 3a Colomac Zone 2 Pit, Summer, 2006

Aerator ON July 12 10:00

Aerator OFF July 19–23

T dataloggers, Pieters raft 2006 (UBC)
Temp change July 12 – 19, 2006 from Temp dataloggers, Pieters Raft (UBC)
DO Profiles in Zone 2 Pit - 2006

Figure: Percent Dissolved Oxygen Profiles over time in Zone 2 Pit. The graph shows the depth (m) on the y-axis and percent dissolved oxygen on the y-axis. Various dates are indicated on the graph, corresponding to different dissolved oxygen profiles.
Zone 2 Pit – Thiocyanate Inventory

21 July 06, 6.4 mg/L
24 Aug 06, <0.5 mg/L

Apr 06, 40.7 tonnes
Zone 2 Pit – Ammonia Inventory

Ammonia-N Inventory (tonne)

- 21 Jul 06, 17.2 mg/L
- 24 Aug 06, 17.5 mg/L
- 12 Sept 06, 13.0 mg/L
Z2 Pit Results for NO₃-N (mg/L)

<table>
<thead>
<tr>
<th>Depth (m)</th>
<th>June 23/06</th>
<th>July 21/06</th>
<th>Aug 2/06</th>
<th>Aug 24/06</th>
<th>Sept 12/06</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.036</td>
<td></td>
<td>0.51</td>
<td>6.16</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0.040</td>
<td></td>
<td>0.56</td>
<td>8.2 (15)</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0.040</td>
<td></td>
<td>0.54</td>
<td>7.7 (30)</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0.042</td>
<td></td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>0.042</td>
<td></td>
<td>0.57</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td></td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td>95</td>
<td>0.043</td>
<td></td>
<td>0.52</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NEXT STEPS for Z2P

• Review and analyze 2006 data
• Conduct under ice sample program for DO and water chemistry
• Meet with ENR Scientific Advisory Committee and decide on 2007 treatment schedule