Development of a Cast Stone Formulation for Hanford Tank Wastes

Boyd A. Clark,¹ David G. Atteridge,² Marisol Avila,² Vicki R. Baca,² Kyle M. Bishop,³ Gary A. Cooke,³ Richard J. Lee,¹ Larry L. Lockrem,³ Teo V. Rebagay,² Michael R. Silsbee,¹ Sandy R. Stephens,² and Richard A. Westberg,²

1 RJ Lee Group, Inc., Monroeville, Pennsylvania
2 Center for Laboratory Sciences, Pasco, Washington
3 CH2M HILL Hanford Group, Inc., Richland, Washington
The Goal

- Waste Form Validation
- Process and Facility Design
- Environmental Permitting
- Establishment of the Safety Basis
Procedures Employed in CCS Experimental Work

<table>
<thead>
<tr>
<th>Requirements For Testing (Analytes or Material Parameters)</th>
<th>Testing/Engineering Analysis Method</th>
<th>Acceptance Criteria</th>
<th>Test Procedures</th>
<th>Used in Activity Part #</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quick leach</td>
<td>Abbreviated TCLP</td>
<td>None</td>
<td>Informal laboratory procedure developed by J. R. Conner of Conner Technologies used for scoping leachability tests.</td>
<td>1, 6</td>
</tr>
<tr>
<td>Compression strength</td>
<td>Compression strength</td>
<td>> 500 psi, 28-day</td>
<td>ASTM C 39/C 39M. Sampling 3 cyl AB</td>
<td>2</td>
</tr>
<tr>
<td>Length measurement</td>
<td>Volume reduction</td>
<td>< 5%</td>
<td>ASTM C 174/C 174M. Sampling 3 cyl AB</td>
<td>2</td>
</tr>
<tr>
<td>Bleed water after 1 day curing</td>
<td>"Bleed water test"</td>
<td>< 5%</td>
<td>Modified ASTM C 940.</td>
<td>2, 3</td>
</tr>
<tr>
<td>Free liquids after 28 days curing</td>
<td>Free liquids test</td>
<td>< 0.5%, pH > 9</td>
<td>ANSI/ANS 55.1, same samples used for bleed water, but at end of 28 day cure period</td>
<td>2, 3</td>
</tr>
<tr>
<td>(Tc, U, I, Cs - Rad) NO₃⁻, NO₂⁻, Cr</td>
<td>ANSI/ANS 16.1</td>
<td>None</td>
<td>ANSI/ANS 16.1, measurement of the leachability of stabilized waste</td>
<td>2, 3</td>
</tr>
<tr>
<td>Sb, As, Ba, Be, Cr, Cd, Pb, Hg, Ni, Se, Ag, V, Zn, organics</td>
<td>EPA SW-846, Method 1311 (TCLP)</td>
<td>WAC 173-303, 40 CFR 368</td>
<td>EPA SW-846, test methods for evaluating solid waste, physical/chemical methods, Method 1311</td>
<td>2, 3, 6</td>
</tr>
<tr>
<td>Peak temperature causing deleterious alterations to microstructure</td>
<td>Maximum curing temperature</td>
<td>Maximum Temperature</td>
<td>Curing at 5 temperatures followed by ANSI/ANS 16.1 immersion and subsequent modified ASTM C 39/C 39M</td>
<td>4</td>
</tr>
<tr>
<td>Heat output during cure (1-gal cast stone pour)</td>
<td>Near-adiabatic curing heat evolution</td>
<td>None</td>
<td>CLS-specific procedure to study adiabatic curing heat evolution on a larger cast stone sample. Sampling 1 ea. AB</td>
<td>4</td>
</tr>
<tr>
<td>Thermal transmission</td>
<td>Thermal conductivity</td>
<td>None</td>
<td>ASTM C 177. Sampling two 6" x 6" x 0.5" thick plates AB</td>
<td>4</td>
</tr>
<tr>
<td>Hardened cast stone permeability</td>
<td>Hydraulic conductivity</td>
<td>None</td>
<td>ASTM D 6527-00. Sampling 3 Cyl AB</td>
<td>4</td>
</tr>
<tr>
<td>Heat output during cure (5-gal cast stone pour)</td>
<td>Near-adiabatic curing heat evolution</td>
<td>None</td>
<td>Informal CLS procedure to study adiabatic curing heat evolution on a larger cast stone sample.</td>
<td>4</td>
</tr>
<tr>
<td>NH₃, H₂, NO₃⁻/NO₂⁻ ratio, organic load, water</td>
<td>Explosive or toxic gases test</td>
<td>N/A</td>
<td>N/A</td>
<td>5</td>
</tr>
<tr>
<td>H₂ rate</td>
<td>Hydrogen gas generation rate test</td>
<td>N/A</td>
<td>N/A</td>
<td>5</td>
</tr>
</tbody>
</table>
Selection of Dry Reagent Formulation

- Chromium leaching can be reduced by adding ferrous sulfate to the formulation.
- Bleed water formation can be avoided by using a formulation that involves adding no more than about 30 to 40 mL of liquid waste, after evaporation or dilution, to 90 g of DRF.
Dry Reagent Tests Performed

- Bleed Water
- Quick Leach
Compositions of Dry Reagent Formulations

<table>
<thead>
<tr>
<th>Components</th>
<th>DRF1 (wt%)</th>
<th>DRF2 (wt%)</th>
<th>DRF3 (wt%)</th>
<th>DRF4 (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Portland Cement, Type I,II</td>
<td>44.90</td>
<td>8.16</td>
<td>41.84</td>
<td>20</td>
</tr>
<tr>
<td>Fly Ash, Class F</td>
<td>42.86</td>
<td>44.90</td>
<td>39.78</td>
<td>66</td>
</tr>
<tr>
<td>Blast Furnace Slag, Grade 120</td>
<td>0</td>
<td>46.94</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Attapulgite Clay</td>
<td>5.10</td>
<td>0</td>
<td>11.22</td>
<td>14</td>
</tr>
<tr>
<td>Indian Red Pottery Clay</td>
<td>7.14</td>
<td>0</td>
<td>7.14</td>
<td>0</td>
</tr>
</tbody>
</table>
Mixing DRFs
Mixing DRFs
Initial (24 Hr) Bleed Water Measurements

Bleed Water (mL) vs. Waste Loading (wt%)

- DRF1
- DRF2
Sample Prep for Quick Leach
Simulant Tests Performed

- Density
- Bleed Water
- Compressive Strength
- Volume Change
- Toxicity Characteristic Leaching Procedure (TCLP)
- ANSI/ANS 16.1 Leaching
28-Day Compressive Strength vs. Waste Loading
Cured Cast Stone Volume Change vs. Waste Loading
Dry Reagent Formulations Selected for Further Evaluation (wt% basis)

DRF2

- Portland Cement, Type I, II: 47.69%
- Fly Ash, Type F: 45.49%
- Blast Furnace Slag, Grade 120: 8.2%

DRF4

- Portland Cement, Type I, II: 20%
- Fly Ash, Type F: 66%
- Atta pulgite Clay: 14%
Waste Form Performance Testing with Simulant

- The use of DRF2 results in cast stone with compressive strengths well above the requirement of 500 psi
- For most conditions studied, a slight reduction in volume can be expected during the curing of the cast stone samples
- A formulation condition with a waste loading of 18.8 wt% (TDS basis), or 7.67 wt% (Na$_2$O basis), provides satisfactory waste form testing results
Waste Form Performance Testing with Simulant (leaching)

- For samples prepared from DRF2 and simulant ANSI/ANS 16.1 leaching indices are between 7.1 to 8.5 for nitrate, 7.0 to 8.4 for nitrite, and greater than about 10 to 11 for chromium
Radioactive Sample Tests Performed

- ANSI/ANS 16.1
- TCLP
- Bleed Water
- Total Organic Volatiles
- Semivolatile Organic Analysis (SVOA)
Validation Tests Performed

- Maximum Curing Temperature
- Curing Heat Evolution and Modeling
- Thermal Conductivity
- Hydraulic Conductivity
Grout Pour Cool Down (5 gal)
Waste Form Validation Testing with a Selected Nominal Formulation Using Simulant-Based Samples

- Curing at elevated temperatures of 60 to 85 °C as opposed to room temperature reduces compressive strength. Samples cured at elevated temperatures still have exceptionally high compressive strength, three to four times the required level.
Waste Form Validation Testing with a Selected Nominal Formulation Using Simulant-Based Samples

• It may not be possible to measure the unsaturated hydraulic conductivity of cast stone due to its impermeable nature.
Waste Form Validation Testing with a Selected Nominal Formulation Using Simulant-Based Samples

- The adiabatic temperature rise during curing of cast stone with the nominal formulation and prepared from simulant is approximately 30 °C.
Providing the effective average temperature of the low-activity waste (LAW) and DRF being blended to produce cast stone is maintained at or below 40 °C, the maximum temperature achieved during curing is 70 °C or less.
Waste Form Performance Testing with Radioactive (LAW-based) Samples

- For thallium, the method detection limit (MDL) for the analysis was greater than the UTS standard. Volatile organic analyses and SVOA are not present at levels of interest.
Technetium Getter Testing

- Of the nine candidate technetium getters tested, Cosmic Black\(^1\) bone char produced the best results, with a technetium leachate concentration at 62% of the technetium leached from a sample with no getter added.

\(^1\)Cosmic Black is a trade name of Ebonex Corporation, Melvindale, Michigan.
Cast Stone Waste Form Performance
Nitrate Diffusion-ANSI/ANS 16.1 Leach Test
Primary Cast Stone Formulation

- Cast stone leaching resistance is at least 1.5 orders of magnitude better than required to satisfy drinking water limit.

Drinking Water Limit for 30% of Waste to Cast Stone

Waste Loading, Na$_2$O Basis, wt %
ANSI NO$_2$ Leaching Index vs. Waste Loading 90-Day Results for DRF2
ANSI NO$_3$ Leaching Index vs. Waste Loading 90-Day Results for DRF2
Cast Stone TCLP Test Results
Chromium Leaching vs. Waste Loading
Primary Formulation

Federal Universal Treatment Standard Limit

TCLP Chromium Concentration, mg/L

Waste Loading, Na₂O Basis, wt %
Comparison of Simulant and Actual LAW Composition

<table>
<thead>
<tr>
<th>Analyte</th>
<th>LAW Simulant (M)</th>
<th>Actual LAW (M)</th>
<th>Difference (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Al</td>
<td>0.058</td>
<td>0.208</td>
<td>-72</td>
</tr>
<tr>
<td>B</td>
<td>N/A</td>
<td>0.0021</td>
<td>N/A</td>
</tr>
<tr>
<td>C$_2$O$_4$</td>
<td>0.0097</td>
<td>0.0105</td>
<td>-7.4</td>
</tr>
<tr>
<td>CO$_3$ (TIC)</td>
<td>0.484</td>
<td>0.533</td>
<td>-9.1</td>
</tr>
<tr>
<td>Ca</td>
<td>N/A</td>
<td>0.0014</td>
<td>N/A</td>
</tr>
<tr>
<td>Cl</td>
<td>0.0430</td>
<td>0.0415</td>
<td>3.6</td>
</tr>
<tr>
<td>Cr</td>
<td>0.0097</td>
<td>0.0186</td>
<td>-48</td>
</tr>
<tr>
<td>F</td>
<td>0.030</td>
<td>0.018</td>
<td>63</td>
</tr>
<tr>
<td>K</td>
<td>0.0118</td>
<td>0.0090</td>
<td>30</td>
</tr>
<tr>
<td>Na</td>
<td>4.75</td>
<td>5.10</td>
<td>6.9</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>0.414</td>
<td>0.414</td>
<td>0</td>
</tr>
<tr>
<td>NO$_3$</td>
<td>2.34</td>
<td>2.44</td>
<td>-4.4</td>
</tr>
<tr>
<td>Free OH</td>
<td>0.52</td>
<td>0.51</td>
<td>2.2</td>
</tr>
<tr>
<td>PO$_4$</td>
<td>0.0461</td>
<td>0.0515</td>
<td>-11</td>
</tr>
<tr>
<td>Si</td>
<td>N/A</td>
<td>0.0039</td>
<td>N/A</td>
</tr>
<tr>
<td>SO$_4$</td>
<td>0.0891</td>
<td>0.0932</td>
<td>-4.5</td>
</tr>
<tr>
<td>Other Soluble TOC (e.g., acetate)</td>
<td>0.36</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>TOC</td>
<td>0.285</td>
<td>0.233</td>
<td>22.6</td>
</tr>
</tbody>
</table>
Leaching Observations

- Similar Values Measured
 - Part 2 and 3 Testing
 - Nitrate ANSI/ANS 16.1
 - Decreased as waste loadings increased
 - Nitrite
 - Decreased as waste loadings increased
 - With Simulant and with LAW

- Crystal formation during evaporation to increase waste loading does not appear to influence nitrate leaching
Waste Form Performance Testing with Radioactive (LAW-based) Samples

- A formulation condition with a waste loading of 18.8 wt% (TDS basis), or 7.60 wt % (Na$_2$O basis), provides satisfactory waste form testing results, can be obtained by use of evaporation to reduce the LAW volume by slightly less than 50%, and is acceptable as the nominal (design basis) formulation.
Waste Form Performance Testing with Radioactive (LAW-based) Samples

- ANSI/ANS 16.1 leaching indices for nitrate, nitrite, and technetium increase as waste loadings decrease.
Samples Prepared from DRF2 and LAW and Waste Loadings of 10.2 to 24.2 wt% (TDS basis), or 4.12 to 9.79 wt% (Na₂O basis)

- Technetium
- Iodide
- Nitrite
- Nitrate

ANSI/ANS 16.1 Leaching Indices
Waste Form Performance Testing with Radioactive (LAW-based) Samples

- For samples prepared from DRF2 and LAW and for waste loadings of 10.2 to 24.2 wt% [total dissolved solids (TDS) basis], or 4.12 to 9.79 wt% (Na$_2$O basis) 129I concentrations in the leach liquids were below the quantification limit.
Waste Form Performance Testing with Radioactive (LAW-based) Samples

- With the possible exception of thallium, samples prepared from DRF2 and LAW do not exceed the leaching requirements of the Toxicity Characteristics List in the WAC-173-303, “Dangerous Waste Regulations,” and Federal Universal Treatment Standards for all conditions studied.
Waste Form Performance Testing with Radioactive (LAW-based) Samples

- Uranium and cesium leach indices could not be calculated due to uncertainties in the LAW source terms and barium interference with the inductively coupled plasma/mass spectroscopy (ICP/MS) analysis of the leach liquids.
Cast Stone A Viable Waste Form