Correlating Gas Phase Dispersion In Unsaturated Soils

Darryl Cann, M.Sc. Eng Candidate
Warren H. Stiver, Ph.D., P.Eng., Professor
Richard G. Zytner, Ph.D., P.Eng., Professor

University Of Guelph, School of Engineering
Outline

- Introduction
- Research Goals
- Experimental Approach
- Results
- Future Work
Introduction

- 10% of USTs in USA and Canada are currently leaking
Introduction – cont.

- Superfund Remedial Actions (EPA, 2004):
 - 35.3% SVE
 - 17.6% Bioremediation/Bioventing
Bioventing and SVE Modeling

- Advection-dispersion equation

$$\frac{\partial c}{\partial t} = D_L \frac{\partial^2 c}{\partial x^2} - v \frac{\partial c}{\partial x} \pm \sum r_i$$

- Longitudinal Dispersion Coefficient

$$D_L = \alpha v + D_{Diff}$$
SVE and Bioventing

- Rule of Thumb Design

- Models
 - Performance estimates
 - Lack of reliable coefficients
Dispersion

- Gradual spreading and mixing of solute with advective flow
 - Velocity Gradients
 - Concentration Gradients
Dispersion Mechanisms

- Path Tortuosity
- Friction in Pore
- Pore Size
Dispersion Mechanisms

- Path Tortuosity
- Friction in Pore
- Pore Size
Research Goals - Overall

Soils Research Group

- MTC
- Dispersion
- Biological Degradation

SVE and BV Models
Research Goals - Dispersion

- **Phase I**
 - Develop experimental apparatus
 - Develop correlations
 - Disturbed soils

- **Phase II**
 - Test correlations on field core samples
 - Modify correlations for field predictions
Methodology

- 1-D Non-Reactive Tracer experiments
- Open Vessel Boundary Conditions
Methodology – cont.

Soil and Columns

<table>
<thead>
<tr>
<th>Soil Properties</th>
<th>OS</th>
<th>SLS</th>
<th>ESL</th>
<th>BC</th>
</tr>
</thead>
<tbody>
<tr>
<td>% Sand (by weight)</td>
<td>98.8</td>
<td>69.4</td>
<td>34.0</td>
<td>21.0</td>
</tr>
<tr>
<td>% Silt (by weight)</td>
<td>1.2</td>
<td>24.4</td>
<td>50.1</td>
<td>35.1</td>
</tr>
<tr>
<td>% Clay (by weight)</td>
<td>0</td>
<td>6.2</td>
<td>15.9</td>
<td>43.9</td>
</tr>
</tbody>
</table>

- OS – Ottawa Sand
- SLS – Simcoe Loamy Sand
- ESL – Elora Silt Loam
- BC – Brookston Clay

Water Content

- Air Dry (~5%) to Field Capacity
Methodology - cont.

- **Tracer Injection**
 - Solenoid Valve
 - Tracer - Helium
 - Carrier - Nitrogen

- Two sampling locations
Methodology – cont.

- Thermal Conductivity Detector (TCD)
- Real-Time Data Collection
 - NI DAC
 - LabVIEW
Experiment Schematic
Data Analysis

- Residence Time Distribution
 - Variance, Mean residence time, Dispersion

![Graph showing TCD response over time for Channel 1 and Channel 2 with labels for \(s^2_1 \) and \(s^2_2 \).]
Results

- New, working apparatus
 - Disturbed
 - Undisturbed
Results - cont’d

- Preliminary Air Dry Ottawa Sand
 - Dispersivity (a) = 0.042 cm

- Gidda et al. (2004)

<table>
<thead>
<tr>
<th>Soil Type</th>
<th>Moisture Content</th>
<th>Observed Dispersivity (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottawa Sand</td>
<td>Air Dry</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td>3%</td>
<td>1.2</td>
</tr>
<tr>
<td>Delhi Loamy Sand</td>
<td>Air Dry</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>2.6</td>
</tr>
<tr>
<td>Elora Silt Loam</td>
<td>Air Dry</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td>20%</td>
<td>1.1</td>
</tr>
<tr>
<td></td>
<td>30%</td>
<td>1.9</td>
</tr>
<tr>
<td>Brooksten Clay</td>
<td>Air Dry</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>40%</td>
<td>2.4</td>
</tr>
</tbody>
</table>
Discussion

- Reliable dispersivity values
- SVE and BV

 - Improved closure predictions
 - Improved system designs
Future Work

- Disturbed soil are ongoing
- Collect field core samples
- Compare results with correlations
Acknowledgements

- NSERC Strategic Grant
- Dr. Tejwant Gidda
- Jon Brooker
- Eyad Barakat
Thank You

Questions / Comments ?