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The driving force is Gravitation !!
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Pressure gradients are not the motor for motion of fluids in the subsurface. Upward 

flow maintained by unused gravitational energy. The stored energy stems from 

gravitational energy not needed to overcome resistance during downward flow 



Demonstration of groundwater flow entering a surface water body from 

beneath.

© 2015, K. U. Weyer
3



4
© 2015, K. U. Weyer

Hydrostatic versus Hydrodynamic 

flow conditions
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Figure 1 (left): Comparison of 

hydrostatic and hydrodynamic 

conditions in subsurface fluid 

flow (from Weyer, 2010.             

[F: hydraulic potential;         

grad F : hydraulic force]

Figure 2 (right): Hydrostatic 

forces versus hydrodynamic 

forces (after Hubbert, 1953).

Figure 3 (left): Comparison of 

forces under hydrostatic and 

hydrodynamic conditions (from 

Weyer, 2010)

Figure 4 (right): Resultant 

calculation of flow directions for 

fluids of different density within 

the fresh water force field. 

From Weyer (2010)
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Weyer, 2010
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Resultant force 

directions for fluids 

with various densities 

within the fresh water 

force field.



Variable density flow

Variable density

Variable density implies that the density varies in space. 

Forced and Free convection (Bear, 1972, p. 642)

Convection imposed by internal means is known as forced 

convection, while fluid motion caused by density differences 

due to temperature variations in the field of flow is called 

free, or natural convection.

The density differences could also be caused by chemical 

constituents.
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What we address:

• Bachu and Underschultz’s (1993) buoyancy forces do not exist.

• Free convection does not exist under on-shore hydrodynamic conditions.

• In groundwater discharge areas saturated brine can flow to the surface.

• Variable density flow transports ocean-type salt water to a small river and was 

successfully calculated in a numerical model of a groundwater flow system 

using a density r=1 g/cm3, so can be water of a temperature of 100°C. 

• Buoyancy reversal takes on an important role in the groundwater dynamics of 

the Athabasca oil sands, so does Hitchon’s (1969) low fluid potential drain.

• The above mechanisms and insights are of significance for an optimal and 

successful practical operation of bitumen production from the Athabasca oil 

sands.
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Referring to Bear (1972, p. 654), Bachu et al. (1993, p. 7) and Bachu 

and Underschultz (1993, p.1754) both considered two types of driving 

forces for variable density groundwater flow in northeast Alberta, “a 

potential force resulting from piezometric head differences, and a 

buoyancy force resulting from density differences (Hubbert, 1940; 

Bear, 1972)”.

First a corrective note:

The above reference to Hubbert’s (1940) treatise on the physics of 

groundwater flow is incorrect. Hubbert (1940) never mentioned 

‘buoyancy’ or ‘buoyancy forces’ and, as a matter of fact, Hubbert deals 

with variable density flow only in 1953 (Hubbert, 1953, 1956) and there 

in a manner diametrically different from that of Bear (1972), Bachu et al.

(1993), Bachu and Underschultz (1993), and Bachu (1995). 

Bachu, S., J.R. Underschultz, B. Hitchon, and D. Cotterill, 1993. Regional-Scale Subsurface Hydrogeology in Northeast 

Alberta. Alberta Research Council, Bulletin No. 61, 44 p.

Bachu S., and J.R. Underschultz, 1993. Hydrogeology of formation waters, northeastern Alberta basin. AAPG Bulletin, 

vol. 77, issue 10, p. 1745-1768. 

Bachu, S., 1995. Flow of variable-density formation water in deep sloping aquifers: review of methods of representation 

with case studies. Journal of Hydrology, vol. 164, p. 19-38.

The big difference between assumptions and physical reality – or –

where the handling of variable density flow usually goes astray
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Schematic 

comparison of 

hydraulic forces by 

Bachu (1995)  and 

Hubbert (1953, 1956).

Bachu (1995) clearly 

lays out the conditions 

for buoyancy forces that 

had already been 

described in Bachu et al. 

(1993) and Bachu and 

Underschultz (1993).



12
© 2015, K. U. Weyer



13
© 2015, K. U. Weyer

Bear (1972), Bachu et al (1993), Bachu and

Underschultz (1993), Bachu (1995) and many

others are in error when claiming that variable

density flow needs to be dealt with by applying two

force systems that of piezometric head forces and

that of buoyancy forces.

The action of buoyancy is physically incorporated

within the vectorial calculation of potential

(energy/mass) forces as shown in slides 8 and 12.
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FREE CONVECTION

Hydrostatic Boundary Conditions
Off-Shore and laboratory experiments
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Black Smokers – slide by John Molson, Laval University
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Cases of free convection in a laboratory setting which 

can also be numerically modelled:

1. Heat source underneath a hydrostatic system

2. Heavier fluid on top of a hydrostatic water body

Simmons, 2011, Variable Density 

Groundwater Flow: From current 

challenges to future possibilities.  

Presentation at the 2nd International 

HydroGeoSphere User Conference, 

April 11-13, 2011, Hannover, 

Germany.



Van Dam, R. L., C.T. Simmons, D.W. 

Hyndman, and W.W. Wood, 2009. 

Natural free convection in porous 

media: First field documentation in 

groundwater. Geophysical Research 

Letters, vol. 36, issue 11, Fig. 1.  

[Refers to Abu Dhabi.] 

“Representative examples of 

fingering associated with 

unstable free convection in 

groundwater from (a) laboratory 

experiments and (b) numerical 

modeling.”

© 2015, K. U. Weyer
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In the experiment a heavier 

saline fluid is positioned upon 

the less saline water under 

hydrostatic conditions. The 

numerical calculation relies 

upon similar conditions.



Simmons, 2011, Variable Density Groundwater Flow: From current challenges to future possibilities.  

Presentation at the 2nd Int’l HydroGeoSphere User Conference, April 11-13, 2011, Hannover, Germany.

Downloaded on August 31, 2013 from http://www.hgs-conference2011.uni-

hannover.de/fileadmin/hgs_2011/pdf/Simmons_HGS_Workshop_2011.pdf

© 2015, K. U. Weyer
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Numerical

modeling

Laboratory

experiments

http://www.hgs-conference2011.uni-hannover.de/fileadmin/hgs_2011/pdf/Simmons_HGS_Workshop_2011.pdf
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Abu Dhabi, UAE

Naturally occurring free convection?
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after CIA, 1995

Overview of the United Arab Emirates.   Red square: Field site.
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Van Dam et al., 2009, Fig. 2c

The geophysical research site lies within a hummocky area of the sabkha, 

indicating the presence of strong local flow systems after rain events.



History

2008 first electrical resistivity measurements in Abu Dhabi Sabkha

2009 paper in AGU’s Geophysical Research Letters: “Natural free convection 

in porous media: First field documentation in groundwater”; believe they found 

fingering; co-author Craig T. Simmons

2009 second electrical resistivity measurements in Abu Dhabi Sabkha. No 

fingering found

2011 Hannover and Feflow presentations by Craig T. Simmons: 

“Hundreds of papers on theory, modelling & laboratory experiments on finger 

instabilities associated with free convection … BUT A COMPLETE LACK 

OF CONCLUSIVE FIELD BASED EVIDENCE AND DATA !”

2014 paper in AGU’s Water Resources Research “Electrical imaging and fluid 

modelling of convective fingering in a shallow water-table aquifer,” co-author 

Craig T. Simmons. The paper deals with the 2008 and 2009 field 

measurements of electrical resistivity. Surprisingly the conclusion is now that 

free convection exists in the Sabkhat al Salamiyah of Abu Dhabi.

Continued on next slide
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In addition to previous electrical resistivity work an additional hydrological 

numerical model was calculated with the boundary conditions as shown below:

Van Dam et al., 2014, Equation (3)

Van Dam et al., 2014

A velocity potential version of 

Darcy’s equation was used.

The model domain is essentially a closed box of about 30 m length and 10 m 

height. It is essentially hydrostatic although a groundwater table gradient of 

0.0002 m has been measured in the field and supposedly superimposed as a 

hydraulic gradient. However, the gradient of the groundwater table is nearly 

never the actual hydraulic gradient causing groundwater flow. The authors did 

not take the actual gradients and flow direction into account. They ignored the 

actual local and regional groundwater flow pattern in the area of their 

investigation. 

23
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After Alsharhan et al., 2001 

Schematic diagram of regional and intermediate groundwater flow system. The 

regional systems deliver Cl- water to the regional Sabkhat discharge areas   
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Map showing the location of shallow, intermediate, and deep piezometers on the 

coastal sabkha of Abu Dhabi. Modified from Wood (2011), after Wood et al. (2002).



Free convection: 

a regress in hydraulic knowledge?

Both of these textbooks are from authors who are proponents of ‘free convection’ 

based on the application of an invalid form of Darcy’s equation (using pressure 

gradients as driving forces) and the assumption of hydrostatic conditions to prevail 

in an hydrodynamic environment. 

The answer to the above question is: 

Definitely YES

2006                 2009

© 2015, K. U. Weyer
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Density changes along flow lines within 

real-world groundwater flow systems

A. Field example Salt River Basin, NWT, Canada: 

Upward discharge of saturated brine.
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Saturated brine (r ~1.3 g/cm3) flows upwards to the 

surface? 

Many scientists and practitioners in Alberta and worldwide 

claim that buoyancy forces (in this case directed downwards) 

would prevent this from happening.



Field example in Salt 

River catchment basin, 

NWT, Canada 

• Saturated [~350 g/l; density    

~1.3 g/cm3] brine discharging 

upwards beside a creek

• Salt deposit is caused by

precipitation of salt not by   

evaporation of brine.

picture: K.U.Weyer, 1977

© 2015, K. U. Weyer
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Upward discharge of 

saturated brine to the 

surface in the head 

waters of the Salt River

Extent of oil sands taken 

from Einstein, 2006
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Density changes along flow lines within 

real-world groundwater flow systems

B. Field example and mathematical model: Upward 

discharge from a depth of 1000 m of ocean-type 

saline water in a deep groundwater flow system at 

Münchehagen, Germany
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Weyer, K.U., 1996. Physics of groundwater flow and its application to the migration of dissolved contaminants. Final Research

report to the Federal Environmental Office of the German Government, April 1996 [in German], 204 p
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Geologic cross-section taken from 1:25,000 geologic maps.  Calculated groundwater flow directions 

based on groundwater table (following topography) and estimated permeability contrasts

2D-vertical model of groundwater flow directions 

at the Münchehagen landfill area
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Weyer, 1996

Cross-section A-B showing flow lines calculated by 

2D-vertical mathematical model   

• SAD = landfill 

Münchehagen

• Laterally-compressed 

flow lines as returned by 

model calculation; 

vertical exaggeration 

30:1

• Upward flow line of saline 

water occurs at 50 m 

depth below ground

• Due to higher permeable 

layer, lateral flow of 

shallow and deep flow 

lines converge towards 

river Ils

35 © 2015, K. U. Weyer



Gronemeier et al., 1990, Fig.7

Occurrence  of saline water in 

borehole 226 at a depth of 

about 50 m below ground. 

• Conductivity and salinity of the saline 

water is about that of ocean water.

• Upward flow of saline water to about 

50 m depth due to higher permeable 

layer above that depth (see 

permeability distribution in diagram).

• Due to that higher-permeable layer, 

lateral flow of shallow and deep flow 

lines converge towards river Ils.

• Water levels in diagram indicate 

downward flow in local flow system 

and upward flow in the regional saline 

flow system.

• The occurrence of salt water is 

coincidental. The same flow pattern 

would emerge with freshwater.

36 © 2015, K. U. Weyer



Weyer, 1996

Why is fresh water modeling suited to determine 

the flow lines of saline seawater?

• Freshwater determines the field of the 

potential in the subsurface.

• With a density of 1.03 g/cm3 the vectoral 

pressure potential force for this seawater-type 

saline water is very similar in magnitude and 

direction to that of fresh groundwater with a 

density of 1.00 g/cm3.

• Thus the flow directions are very similar for  

ocean-type saline groundwater and fresh 

groundwater [see adjacent figure].

• This has been verified by the occurrence of 

saline water at a depth of about 50 m below 

ground in borehole 226 and in the model 

results.
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Downward-Directed 

Pressure Potential Forces: 

‘Buoyancy Reversal’
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Directions of 

gravitational and 

pressure potential 

forces at ‘Buoyancy 

Reversal’

grad      F

r
1

- g            

 -    grad p 

= hydraulic force

= gravitational force

= pressure potential force

Modified after Weyer, 1978
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Documented Occurrences 

of Buoyancy Reversal in 

Alberta
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Modified from Koch, 2014. Application for Approval 

of the Dunkirk Commercial Demonstration Project, 

Appendix H (Hydrogeology)

Occurrence of Buoyancy Reversal caused by downward flow 

through the Cretaceous Clearwater aquitard into the Devonian.

© 2015, K. U. Weyer
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Karst 

and 

salt dissolution

Epigenic karst: 

formed close to 

surface in recharge 

areas

Hypogenic karst: 

formed at depth and 

in regional discharge 

areas



Schematically-

estimated extent of 

Hitchon’s (1969) 

“low fluid potential 

drain” in the area of 

the Athabasca oil 

sands

44
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Extent of oil sands taken 

from Einstein, 2006



Effect of scale on permeability in karst. Literature data for the Grosmont reservoir added. 

Hundreds of Darcies occur at the well scale. Speculation of possibly thousands of Darcies in a 

basin-scale network of karst conduits.

[M = Machel et al., 2012; L = Luo et al., 1994; P = Piron, 2008; 

R-H = Russel-Houston et al., 2011]

© 2015, K. U. Weyer
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(after Kiraly, 1975, Fig 19) 



Synopsis

• Free convection can only exists in nature under hydrostatic 

boundary conditions.

• Under hydrodynamic conditions saturated brine may flow 

upwards to the surface if the hydraulic and geologic 

conditions are right.

• When dealing with on-shore conditions the application of 

physically-consistent force potentials and groundwater flow 

systems are the methods of choice at the Athabasca oil 

sands. 

© 2015, K. U. Weyer
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Any questions on the 

physics of groundwater 

dynamics and its field 

documentations in the 

Athabasca oil sands?
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