Approaches to Treatment Optimization of Humics in Wastewater: 'DOE' Vs 'OFAT'

Leo Asuelimen, Katherine Huddersman
Wastewater Treatment Research Unit
De Montfort University
Leicester, United Kingdom

Process Optimization

3

Content

1 Background

What We Did & How

2

Fresh-Cut Agricultural Produce

 Any fruit or vegetable that undergoes minimal or no processing after harvest

Fresh-Cut Agricultural Industry

Fresh-Cut Produce Wastewater

- High amount of organic load
 - Field soil
 - Plant debris
 - Soil particles
 - Salt
 - Pesticide residues

Humic substances

What the Legislation Says?

- Reuse and recycling of wastewater is supported by European Union (Council Directive, 1991; 1998; EU, 1996)
- Use of alternative water qualities is justified
 - Reuse must not compromise sanitation
 - Reuse must not cause adulteration of the product

- Wastewater reuse in food industries for washing purposes only
 - Wastewater must be treated by an advanced treatment system
 - Product, facilities, equipment, and utensils must undergo a separate final rinse with fresh portable water (USDA, 1999)

Advanced Oxidation

- Advanced Chemical Oxidation
 - Heterogeneous Catalyst

http://www.tucsonaz.gov/water/aop

Lab scale

Pilot scale

Commercial scale

Experimental Optimization

- Wastewater (humics)
- Catalyst
- H₂O₂
- pH

Chemical process (Catalysis)

Treated wastewater

Optimization Approaches

- 'One Factor at a time' (OFAT)
 - -Main-Effects Model: $Y_1 = X_1 + X_2$

Design of experiments (DOE)

-Statistically vary factors simultaneously Interactions Model: $Y_1 = X_1 + X_2 + X_1*X_2$

Process Optimization

3

Content

Background

What We Did & How 2

What We Did

Compared a statistical design of experiment (DOE) and one factor at a time (OFAT) approach in the optimization of humics contaminated water

The Questions

Will the DOE and OFAT approach provide the same optimum treatment condition for humics?

Which approach is better?

- Treatment efficiency
- Faster
- Cost savings

How We Did It

- Bench scale experiments
- Simulated Humic acid contaminated water (25mg/L)
- Key parameters
 - pH
 - H₂O₂ concentration
 - Mass of Catalyst
- UV/Vis Humic acid
 - Aromaticity @254 nm
 - Colour @400 nm

•HPLC-UV - H₂O₂

How We Did It

The Box–Behnken design

JMP Pro 11 software

Vay Daramatara	Levels		
Key Parameters	Low (-1)	Center (0)	High (+1)
Mass of Catalyst (g)	3	5	7
H_2O_2 (mg/L)	50	550	1000
рН	3	5	7
Responses	Goal		
% Degradation of Humic acid @ 254nm	Maximize		
% Degradation of Humic acid @ 400nm	Maximize		

How We Did It

The Box–Behnken design

- 15 experiments
- 3 replicated center points

	Mode	Key Parameters			
Run		Catalyst (g)	H ₂ O ₂ (mg/L)	рН	
1	+ 0 +	7	550	3	
2	0 + -	5	1000	3	
3	0	5	100	3	
4	- 0 -	3	550	3	
5	0	3	100	5	
6	++0	7	1000	5	
7	- + 0	3	1000	5	
8	+ - 0	7	100	5	
9	0 + +	5	1000	7	
10	0 - +	5	100	7	
11	+ 0 +	7	550	7	
12	- 0 +	3	550	7	
13	0 0 0	5	550	5	
14	0 0 0	5	550	5	
15	0 0 0	5	550	5	

Process Optimization

3

OFAT Optimum Catalyst

EFFECT OF CATALYST ON HUMICS DEGRADATION

(Vol. 100mg/L; 25mg/L HA; 500mg/L H₂O₂; pH 5.3; Temp 23°C)

OFAT Optimum H₂O₂

EFFECT OF H₂O₂ ON HUMICS DEGRADATION

(Vol. 100mg/L; 25mg/L HA; 6g catalyst; pH 5.3; Temp 23°C)

OFAT Optimum pH

EFFECT OF PH ON HUMICS DEGRADATION

(Vol. 100ml; 25mg/L HA; 800mg/L H₂O₂; 6g Catalyst; 23°C)

OFAT Optimum

94.2% colour

DOE Optimum Catalyst

DOE Optimum H₂O₂

DOE Optimum pH

DOE Optimum

DOE Optimum

Validation of DOE

Validation of DOE Conditions of Humic Acid Degradation (25mg/L HA; Temp 22±1 0C)

OFAT Vs DOE

OFAT Approach

94.2% colour

DOE Approach

100% colour

27

DE MONTFORT UNIVERSITY

Process Optimization

3

Content

Background

What We did & How

2

Will the OFAT and DOE approaches provide the same optimum treatment condition for wastewater?

OFAT – 800mg/L H_2O_2 ; 6g Catalyst; pH 3 DOE – Range of conditions: 200 to 800mg/L H_2O_2 ; 6 to 8.5g Catalyst; pH 3 to 3.5

Which approach is better?

- The DOE approach to optimization was more robust
 - More information on the design space
 - Cost savings: ≈ 4 folds (75%) savings on hydrogen peroxide

Thank You

