

Quantifying Risk for Groundwater Modelling From Deterministic to Stochastic Geo-models

Maxime Claprood*, Matthew McLean, Laura Weaver, Gordon MacMillan, Jens Schumacher

Objective

• Discuss the role for stochastic geo-models in hydrogeologic studies

- From reservoir modelling...
 - Dubrule (2003): Geostatistics for Seismic Data Integration in Earth Models.

- From reservoir modelling...
 - Grana and Dvorkin (2011): Geostatistical simulations in seismic reservoir characterization studies

- ... to hydrogeology studies
- Scale of the problem
 - Regional study: 10's to 1000's km (water supply)
 - Local study: 10's to 100's m (solute transport, wastewater)
- Level of heterogeneity
- Well control
 - Hydraulic parameters availability
- Time / economic incentive

- ... to hydrogeology studies
 - Heterogeneity vs Data / Model Resolution

Figure 7: Realizations of permeability and their mean with different scales of heterogeneity extracted from realizations of 200 x 100 scale models

Fig. 3 Evolution of wide plumes for different flow orientations (WE flow direction in plots a, c, e; SN flow direction in plots b, d, f) and different MBs (MB1 in plots a and b, MB2 in plots c and d, MB3 in plots e and f)

(Vanessa et al., 2009)

(Singh and Srinivasan, 2014)

Regional Models

CLRWMA Model (Matrix 2012)

- Interpolation of 2D horizons from well picks, constrained by knowledge of geology
 - Build 3D grid model by filling between the surfaces (Gocad)
- Model is the "most-likely" representation of stratigraphy / hydrostratigraphy at regional scale
 - Averaging local groundwater flow pattern

Definition of geo-model

- 3D model representation of facies representing:
 - geology
 - petrophysics
 - hydrostratigraphy
- Assignment of facies to all cells of the 3D model representation
 - How to assign facies?

Definition of geo-model

1. Deterministic Approach:

- 1 facies per unit
 - Assume homogeneous parameters for each unit / layer
 - No uncertainty
- Kriging
 - 1 best-fit model (least error)
 - Uncertainty evaluated but not considered

2. Stochastic Approach:

- Multiple realizations
- Uncertainty considered

Problematic

Deterministic Geo-models vs Stochastic Geo-models

	Deterministic	Stochastic
Properties	Honors wells	Honors wells Honors histogram and probability
Output	One unique "best-fit" geo- model	Multiple "equally probable" geo-models
Use	Mapping Regional-scale geo-models	Heterogeneity modelling Local-scale geo-models Uncertainty quantification

modified from Dubrule (2003)

Stochastic Geo-models

Objective: Build several "equally-probable" geo-models

Doliguez et al. (2014)

- Probabilistic approach of uncertainty and risk analysis for:
 - groundwater modelling
 - Solute transport problems

3 Case Studies Stochastic Geo-models

- Quantify risk for groundwater modelling in 3 different contexts:
 - Site 1: Water Quality Impacts to a residential well
 - <u>Site 2:</u>
 Thermal plume migration and potential surface water/groundwater interaction from a Steam-Assisted Gravity Drainage (SAGD) Project
 - Site 3: Wastewater migration away from disposal wells toward nearby source well in same aquifer

Site 1: Project Area

for confidentiality purposes:

Site 1: Project Area

- Regional Model
 - o 2.0 km x 2.5 km
- Local Model
 - o 400 m x 300 m
 - Assess risk of near-surface water quality impacts

Site of Interest

Site 1: 3D Groundwater Flow Model

- Layered model with sandstone domestic use aquifer (DUA) at base
- Structure intended to capture presence of sand lenses
 - critical in characterizing groundwater travel and migration of chloride plume concentrations
- Some heterogeneity
 - random Kzone assignments to upper Till unit
 - K value of each zone tuned by PEST (Model Independent Parameter Estimation)

Site 1: Model Conceptualization

• Hydrogeologic units interpreted along NS (top) and EW (bottom) sections

- Clay - Clay Till - Sand, silty sand - Sandstone - Siltstone

2D cross-sections
What in 3D? out of 2D plane?

Site 1: Objectives

- Build probable representations of hydrofacies distribution
 - Integrate "hard" knowledge at boreholes with "soft" knowledge of geology (trends, regional geology...)
 - Heterogeneous models of geology
 - Sand vs Till facies
- Quantify uncertainty:
 - Geology
 - Hydraulic parameters

Site 1: Initial Parameters

- 3D Cartesian Grid 40 x 30 x 80 cells
- Use boreholes to develop layer structure and units thickness

Site 1: Initial Parameters

- Proportions of hydrofacies: Histograms
- Geometrical trend: Indicator Variograms
 - vertical
 - horizontal

Site 1: Initial Parameters

- Data at local scale, not good to determine larger scale structures
- Knowledge of geology: sand bodies with trend in EW direction
 - Discussions with the project's geologist
 - To replace parameters for horizontal variograms

Site 1: Hydrofacies Modelling

Sequential Indicator Simulations (SIS)

Simulate many realistic geo-models based on statistics from borehole

logs and knowledge of geology

- Simulate the initial spatial distribution of hydraulic parameters within each hydrofacies
 - For input in FeFlow (PEST calibration)
 - Optimization of hydraulic conductivity parameters:
 K or a proxy to K (soil saturation %)

- Simulate the initial spatial distribution of hydraulic parameters within each hydrofacies
 - For input in FeFlow (PEST calibration)
 - Optimization of hydraulic conductivity parameters:
 K or a proxy to K (soil saturation %)

- Simulate the initial spatial distribution of hydraulic parameters within each hydrofacies
 - For input in FeFlow (PEST calibration)
 - Optimization of hydraulic conductivity parameters:
 K or a proxy to K (soil saturation %)

- Simulate the initial spatial distribution of hydraulic parameters within each hydrofacies
 - For input in FeFlow (PEST calibration)
 - Optimization of hydraulic conductivity parameters:
 K or a proxy to K (soil saturation %)

Site 1: Conclusions

- Ability to assess different probable scenarios of contamination at local scale
 - Evaluate possible volumes of contaminant
 - Quantify risk by evaluating the whole range of possible outcomes
- Conduct risk analysis by simulating different scenarios of propagation of contaminant in the near-surface geology
 - Evaluate probable paths of propagation

Site 2: SAGD Project

Site 2: Stochastic Geo-modelling

- Multiple-Point Statistics simulations (MPS)
 - Training Image: Knowledge of depositional trends to guide simulations (can be hand-drawn image, seismic-derived image...)
 - Channel-type structure
 - Not regionally correlatable limited length and width
 - Maximum thickness 25m (based on well logs)
 - 10% sand (based on well logs)

Site 2: Connectivity of Sand Hydrofacies

Simulate 100 probable scenarios of sand facies distribution

Site 2: Connectivity of Sand Hydrofacies

Probability of connectivity to surface water body

Site 3

- Evaluate rate and extent of wastewater migration away from disposal wells toward nearby source well in same aquifer.
 - Assess differences in disposal fluid arrival time and concentration at source well

Site 3: Variability of Geo-models

Site 3: Variability of flow models

- Simulated Concentration of disposal fluid at source well
- Stochastic geo-modelling allows computing the range of concentrations likely to be sourced

To conclude...

- Find best way to integrate available data
 - Deterministic or Stochastic Approach
 - Honor hard data
 - Hydrofacies (sand vs clay)
 - Respect geological knowledge from geologist
- Stochastic Geo-models allow to run Connectivity Analysis
 - Probability of:
 - Facies occurrence
 - Connectivity between Source/Receptor

To conclude...

- Quantify risk by considering the uncertainty and evaluating the variability of stochastic geo-models
- Compute range of possible outcomes
 - minimum mean maximum volumes
 - P10 P50 P90

Any Questions?

Please ask...

or contact me:

Maxime Claprood mclaprood@matrix-solutions.com

mobile: 418 529-4480

