

Effect of Soil Transfer on **Groundwater Quality** Statistical Analysis and Numerical Modeling Shlomo Orr, Khalid Lemzouji, Ron Thiessen (WorleyParsons Canada) Michael Edmonds (Client)

Soil Transfer Alternatives

Question

Will transferring from stack 1 to stack 2 affect soil and GW quality?

Method

- 1. Define parameters that characterise soil quality
- 2. Compare the parameters between Stack 1 and Stack 2
- If soil quality parameters of the two stacks are statistically different, then the effect on GW should be assessed

Method

Step 1

Define parameters that characterise soil quality:

 16 salinity and metal parameters were identified as representative for soil quality. For example: EC, pH, sodium, sulfate, cadmium, arsenic, etc.

Method

Step 2

Compare parameters between Stack 1 and Stack 2:

- Each of the 16 parameters were compared statistically using:
 - 1. Visual comparison of probability distributions
 - 2. Statistical test (Kolmogorov- Smirnoff test)

Statistical analyses -Backround

Schematic Plots of Normal Probability Distributions and their Corresponding Cumulative Distribution Functions with Means, μ , and Variances, \tilde{A}^2

Comparing histograms based on multiple samples >12

Comparing cumulative probability distributions based on multiple samples

ecd = empirical cumulative
distribution (in R)

Kolmogorov-Smirnoff Test

K-S Test Comparing Salinity Parameters in Stack 1 and Stack 2

Parameter	P-Value	Is there statistical evidence that parameter values in Stack 1 and Stack 2 are <u>different</u> ?
EC	.274 >.05	No (they are similar)
Sodium adsorption ratio	7.4×10 ⁻⁶ <.05	Yes (Stack 1 parameter value is higher)
рН	1.2×10 ⁻⁹ <.05	Yes (Stack 1 parameter value is higher)
Soluble chloride (mg/kg)	1.5×10 ⁻⁷ <.05	Yes (Stack 1 soil parameter is higher)
Soluble sodium (mg/kg)	.006 <.05	Yes (Stack 1 soil parameter is higher)
Soluble sulfate (mg/kg)	7.1×10 ⁻⁷ <.05	Yes (Stack 1 soil parameter is higher)

Solute Transport Modeling

Objective:

Predict changes in groundwater chemistry beneath Stack 2. Focus on soluble Sodium and Sulfate

Methodology:

Use a numerical flow and transport model, HYDRUS1D, to predict the effect of added stack on groundwater quality

Information

Borehole # S12-18/12-8-4

PROJECT # 307074-01460.101

Project Name: Phosphogypsum Stack #2 Characterization

Client: Viterra Inc.

Drilled by: Tervita Location: PG Stack #2

Drilling Method: Solid Stem Auger Northing: 5644828

Drill Date: 6-Dec-2012 Easting: 2564

Logged by: VANR Elevation: -

Production waste

Information

WorleyParsons

resources & energy

Borehole # S12-19

PROJECT # 307074-01460.101

Project Name: Phosphogypsum Stack #2 Characterization

Client: Viterra Inc.

Drilled by: Tervita

Location: PG Stack #2 Northing: 5645118

Drilling Method: Solid Stem Auger

Easting: 2525

Drill Date: 6-Dec-2012 Logged by: WARM

Elevation: -

Production waste

Conceptual Model

 $c_1 H 2 c_2$ for Na

 $c_1 H 1.5 c_2$ for SO_4

Conceptual Model

Hydraulic Properties (one of the production waste materials)

1. Silty Clay (low K) $K_s = 5.55 \times 10^{-8} \text{ m/s}$

Hydraulic Properties: log K vs. h

Hydraulic Properties: Theta vs. h

Results: Vertical Concentration Profiles – Sodium, Low K

Profile Information: Concentration Na

Results: Vertical Concentration Profiles – Sodium, K x 10

Profile Information: Concentration Na

Simulated Sodium Concentrations at Bottom – Low K

Bottom Concentration Na

Simulated Sodium Concentrations at Bottom – K x 10

Bottom Concentration Na

Simulated Sodium Concentration Profiles – Very High K

Profile Information: Concentration

Simulated Sodium Concentrations at Bottom – Very High K

Na Bottom Concentration waste materials

Simulated Sulfate Concentration Profiles – Low K

Profile Information: Concentration

Simulated Sulfate Concentrations at Bottom – Low K

SO₄ Bottom Concentration

Conceptual Model

 $c_1 H 2 c_2$ for Na

c₁ H 1.5 c₂ for SO₄

Production Waste Materials:

- 1. Silty Clay (low $K_{s1} = 5.55 \times 10^{-8} \text{ m/s}$)
- 2. Sandy Clay $(K_{s2} = 3.33 \times 10^{-7} \text{ m/s} = 6 K_{s1})$
- 3. Actual Waste Material ($K_{s3} = 1.23 \times 10^{-5}$ m/s > 200 K_{s1}) (Sandy Loam)

Conclusions

- Statistical analyses revealed that out of 16 soil parameters in the two stacks, five parameters are significantly different
- A 1D model of the two stacks was built to simulate the combined effect on concentrations within and beneath the soil column over time
- Simulations show that the addition of Stack1 materials to Stack 2 does not cause significant increase in concentrations
- ➤ Increasing Ks from 5.55 x 10⁻⁸ m/s to 1.23 x 10⁻⁵ m/s shortens transport time from 280 years to 80 years, but reduces the effect on groundwater quality

Thank you

Worley Parsons

resources & energy