

Motivation

The presence of H₂S poses significant risks to contractors and to the integrity of drilling infrastructure on site and causes drilling delays (emergency shut downs);

It is a frequent assumption that all H₂S found during drilling is generated within the reservoir. Although this may be true in most cases, anthropogenic actions can also generate H₂S within the wellbore annular space

This presentation

- ► Introduction properties & toxicity
- summarizes the natural origin and systematics of H₂S;
- ▶ defines several anthropogenic factors associated with the presence of H₂S; and
- ► suggests measures to potentially reduce the generation of H₂S concentrations during well development.

Physical & Chemical Properties - H₂S (gas)

pm: Picometers = 10⁻¹² meters

- ▶ Molecular Formula: H₂S
- ► Molar Mass: 34.08 g/mol (H₂O= 18.0 g/mol)
- ▶ Appearance: Colourless gas
- Odour: faint rotten egg
- ► Density: 1.363 g/dm³
- ➤ Solubility in water: 4 g/dm³
- Heavier than air
- ► Autoignition: 232°C

Alberta Energy Resources (AER) defines H₂S as a naturally occurring, highly toxic, corrosive, gas with the odour of rotten eggs, and sour gas as a raw natural gas with a relatively high concentration of sulfur compounds including H₂S.

Toxicity - H₂S (gas)

- OSHA has established a <u>permissible</u> exposure limit (PEL) (8 hour <u>time-weighted</u> average (TWA)) of 10 ppm;
- ▶ 50–100 ppm leads to eye damage;
- ▶ 150 ppm can paralyze the olfactory nerve
- ► 530–1000 ppm causes strong stimulation of the <u>central nervous system</u> and rapid breathing, leading to loss of breathing; and
- ▶ 800 ppm is the lethal concentration for 50% of humans for 5 minutes exposure (LC50);

H₂S Presence in Groundwater

CaSO₄ .H₂O CaSO₄

CH₂O

Sulfatereduction facultative bacteria

- Frequently detected during drilling, and well workover activities;
- It can occur naturally dissolved in groundwater present in oil sands Fms. & other formations in the Northern Athabasca Region, Alberta;
- About 30% of Canada's natural gas production is sour and most of it is found in Alberta and Northeastern British Columbia;

http://www.capp.ca/environmentCommunity/airClimateChange/Pages/SourGas.aspx

H₂S Presence in Groundwater

- ► H₂S Can be generated through three main mechanisms:
- Chemical sulfur reduction (CSR)
- Biological sulfate reduction (BSR)
- ▶ Thermal sulfate reduction (TSR)

H₂S Generation - Pyrite dissolution (CSR)

FeS₂ + 15/4O₂ + 7/2H₂O
$$\rightarrow$$
 Fe(OH)₃ + 2SO₄²⁻ + 4H⁺
FeS₂ + 14FeOOH + 26H⁺ \rightarrow 15Fe²⁺ + 2SO₄²⁻ + 20H₂O

Sulfur associated minerals (pyrite, pyrrhotite) dissolution can contribute to the occurrence of sulfate in groundwater;

▶ Pyrite dissolution (FeS₂) is minor in carbonatic formations but it is commonly found in other oil sands environments

H₂S Generation - Redox Mediated Process (BSR) Gypsum dissolution

$$CaSO_4(2H_2O) + H_2O$$
" $Ca^{2+} + SO_4^{2-} + 3H_2O$

 dissolved sulfate frequently increases in native carbonatic formation water.

Gypsum (CaSO₄(2H₂O)) and anhydrite (CaSO₄), are the principal constituents of marine evaporites and major contributors to the occurrence of sulfate in groundwater

H₂S Generation – Sulfate Reduction - Redox Mediated Process (BSR)

$$CaSO_4(2H_2O) + H_2O$$
 " $Ca^{2+} + SO_4^{2-} + 3H_2O$

$$2CH_2O + SO_4^{2-}$$
' $2HCO_3^{-} + H_2S$

- this reaction is mediated by microbial metabolism
- proceeds primarily from organic matter (CH₂O)
- Carbonatic Formations may contain natural organic matter or may originate from using process water, boiler feed water, or wastewater injection.

H₂S Generation - Thermochemical Reduction of Sulfate (TSR)

R-CH₃ + 2R=CH₂ + CH₄ +
$$3SO_4^{2-}$$
 + 5H+ \rightarrow 3R-COOH + HCO₃-/CO₂ + $3H_2O$ + $3H_2S/HS$ -

- Thermal decomposition of organic sulfur starts at 200°C;
- ► Thermochemical reduction of sulfate (TSR) starts at temperatures of 100°C-140°C; and
- this reaction is controlled by the temperature, type of organic material and concentration of sulfate (Mayrhofer et al 2014).

Disposal Injection

SO₄/Cl (meq/L) ratios in limestone water, if high (>1), may suggest sulfur oxidation processes occurring.

Sulfate oxidation may be naturally buffered by the presence of limestone dissolution as a result of well acidification.

Gypsum dissolution: $CaSO_4(2H_2O) + H_2O$ " $Ca^{2+} + SO_4^{2-} + 3H_2O$

Sulfate reduction: $2CH_2O + SO_4^{2-}$, $2HCO_3^{-} + H_2S$

Disposal Injection

Wellbore Stimulation

eventually non fresh and clean water is available for wellbore stimulation (CH_2O)

presence of dissolved sulfate may be expected in carbonatic formations

anthropogenic H₂S might be produced

WorleyParsons resources & energy

Warm water

H₂S usually flourish in oxygen-deficient environments and in warm/hot waters (between 30°C and 80°C)

Acid enhancing stimulation

Economics

Assess the risks to H₂S generation

CaSO₄ .H₂O CaSO₄

CH₂O

Sulfatereduction facultative bacteria

- 1. Define the mineralogy of your formation(s) prior to developing a workover program;
- 2. Characterize the source water chemistry to be used during your workover program;
- 3. Define your native formation water chemistry;
- 4. Forecast the H₂S production during workover by applying kinetic tools to include H₂S distribution over the fluid phases within the wellbore

If you find potential for H₂S generation then

CaSO₄ .H₂O CaSO₄

CH₂O

Sulfatereduction facultative bacteria

- 1. Consider opportunities for decreasing acidification volumes;
- 2. Consider decreasing the injection of warm / hot water during workover particularly after acidification injection;
- 3. Assess the option of using an H₂S scavenger
- 4. Work in coordination with your drilling operators

These measures not only will help you to improve the H&SE scenario but also reduce operational cost due to reduced well shut downs and vac trucks utilization

