WATER | WASTE | ENERGY

Using Saline Water For Hydraulic Fracturing: An Overview of Emerging Technology Opportunities

Overview

- Background: Saline Water and Fracing
- Exploring Saline Water Use
- Effects on Frac Operations
- Choosing the Right Technology
- New Technologies
- Conclusion

Saline Water Characteristics

- Produced Water
- Deep Aquifer Source Water

- Heavy Metals
- Alkaline Earth Metals
- Norms

Fracing Operations

Single Development Water Use Up to:

8000 m3 of Water/ Frac Stage

12 Frac Stages/ Well 16 Wells/ Pad

Industry Trends

Current & Projected Number of Wells

Resource Play	2013	2014	3-5 Year
Deep Basin	887	1037	1500
Duvernay	100	200	500
Horn River/Liard	48	98	250
Montney	800	850	1500
Total Pressure Pumping Wells	5564	6044	8285
Total Conventional Wells	5336	5956	5715

Peters and Company: Oil and Gas Overview: Fall 2013: LNG Outlook

Illustration: Cleanenergy BC

Exploring Saline Water Use

- Operational Risk
- Corporate Social Responsibility
- Public Perception
- OPFX/CAPFX

Comparable Industry

Oil Sand Operators Using Saline Water:

Cenovus - Foster Creek - NewsWire.ca

Effects on Existing Operations

Evolution of Technology Adoption

Past

- No collaboration
- Other Industries; Mining, drinking water treatment, petrochemical
- Many failures

Present

- Initial collaboration
- Some groups innovating process
- Some success

Future

- Further transparency
- New processes, chemicals, materials
- Rapid improvement

Risk Optimization for New Technology

Water Treatment To Fresh Equivalent

Evaporation Vs. Membranes

membranes with high permeate flux and high salt rejection

Saline Compatible Fracing Operations

- Treatment to Completions Compatibility:
 - Solids Removal
 - Hardness Removal
 - Scale Prevention

Saline Compatible Frac Chemicals

Water Quality Parameter	Slickwater
Temperature (°C)	3-40 ^b
рН	5.0-8.0 ^b
Chloride (mg/L)	<90,000 ^b
Hardness (mg/L CaCO ₃)	<15,000 ^b
Total Suspended Solids (mg/L)	50 (<100μm) ^b

Solids Removal

- High Flux
- Self Cleaning
- Variety of Membrane/Mesh Options
- High Contaminant Loading Compatible

Triple Pond Liner

Conclusion

- OPEX/CAPEX Saving
- Public Perception/Local Stakeholder Engagement
- Early Development Long Term Success
- Timing is Right

WATER | WASTE | ENERGY

Questions

