

INTEGRATED WATER WASTE | ENERGY

An Integrated Approach to Managing Wastewater Drainage in Urban Catchments and Waterways

Shifting Decision Making

Background

Project Basis:

The likely future direction of the management of urban drainage

Design Basis

- Effects of upstream inflows
- Combined sewer overflows (CSO).
- Rainfall
- Water treatment
- Water quality

Goal:

- Cost effective solutions
- Limit environment impact

Background

Coupling deterministic models of each element into an integrated model of the system as a whole.

Urban Wastewater Management

Real-time Control

Equipment

- Sensors;
- Regulators;
- Controllers; and
- Data transmission systems.

Real-time Control Options

Integrated Control

Integrated Models

Real-time Control Strategy

- Flow, level and quality measurements in upstream sewers:
 - System reaction must be within the time of flow.
- Rainfall measurements and results from rainfall/runoff models:
 - Available reaction time is extended to the time of concentration of the catchment.
- 3. Rainfall forecasts:
 - Dependent on the forecast time horizon.

Real-time Control Strategy

- Preferential upstream storage.
- Preferential downstream storage.
- Balance storage.

Software

Integrated Controls

Subsystems	Devices	Objectives	Decision-finding Methods
Sewer System	PumpsWeirsGates	 Prevention of flooding CSO reduction (frequency, volumes, loads) 	 Heuristics, intuition Self-learning expert system Off-line optimization
Treatment Plant	Weirs, gatesReturn sludge rateWaste sludge RateAeration	 Equalization of flows Maintenance of effluent standards 	 On-line Optimization Model-based control
Receiving River	WeirGates	 Process Maintenance Improve water quality Flood protection 	Application of control theory

(Schutze et al., 1999)

Integrated Models

Real-time Control Applicability

Other network characteristics that favor the RTC applications are:

- Spatially distributed inputs
- Spatially distributed storage
- Larger, flatter, more looped sewer networks
- Many controllable elements (e.g. storage tanks, pumps, overflows).

Real-time Control Applicability

Benefits

- Reduction in the risk of flooding.
- Reduction in wastewater bypass events.
- Reduction in new element capital costs.
- Reduction in operating costs.
- Enhancement of WWTP performance.

Drawbacks

- The construction and implementation time-lines.
- High retrofit capital costs.

Vienna, Austria

Population of 1.8 million spread over 260km² and served by 2200km of sewer system.

- Control devices to regulate water level & flow.
- Measurement devices for water level, flow, & rainfall.
- A SCADA system to collect the measurement data, transmit set points and display information about the system.
- A central point strategy to generate a control decision based on measured and forecasted data.

The system contains 25 rain gauges, 40 in-sewer flow measurement devices and 20 water level measurement units installed at 25 sites.

Integrated Models

In-sewer Treatment

Transformations

A sewer acts as a plug flow reactor with a system retention time that may be equal to or exceed that of only the WWTP. A number of transformation processes occur, even without being specifically engineered.

Physical

- Particle degradation
- Dissolution,
- Mixing
- Agglomeration and flocculation
- Turbulent buffering

Biochemical

- Precipitation
- Hydrolysis
- Suspended biomass; and
- Biofilms

In-sewer Treatment

Treatment Methods

Bi**dingenhanding**ent

Steps in the Right Direction

Future
Combined Sewage Storage - Soon to be commissioned (2014)

Steps in the Right Direction

Towards Sustainable Water Management

Sustainability in Design

Helping to develop municipalities' sustainability policies and objectives into Project Reality.

Aim to embed environmental, social and financial costs across the project life-cycle.

INTEGRATED WATER WASTE ENERGY

Contact Us:

Nicholas Keast, P.Eng.

Water Resources Engineer Integrated Sustainability Consultants Ltd.

Telephone: (403) 688-7033

E: nic.keast@integratedsustainability.ca

Ryan Cant, BSc.

Environmental Scientist Integrated Sustainability Consultants Ltd.

Telephone: (403) 471-7871

E: ryan.cant@integratedsustainability.ca

