WATER QUALITY

Key Concepts
Cryptosporidium/Giardia
What are they?
- Small flagellated protozoan parasites → human pathogens
 - Small intestines
- Hardy cysts
 - Environmentally Stable
 - Survive up to 77 days in water

GIARDIA LAMBLIA

Dick Despommier © 1996

US CDC/Health Canada
GIARDIA LAMBLIA

- Most common intestinal protozoan in NA/worldwide
 - WHO: 200 million cases/year
 - Canada: 5-10%
 - Occurrence: 2 – 200 cysts/100 L up to 8700 cysts/100L

- Global disease
 - Developed countries
 - 2% adults
 - 6-8% children
 - Developing countries
 - 33% of people
GIARDIA LAMBLIA

- Infection rates
 - ‘ summer
 - US: 2X > June – October vs January – March

- Transmission
 - Fecal – Oral via Contaminated
 - Food
 - Water
 - Ingestion: 10 cysts

- Ingestion → Giardiasis
 - Self limiting
 - Immunocompromised

US CDC/Health Canada
GIARDIA LAMBLIA

- **Cysts**
 - Environmentally stable
 - Passed in faeces
 - Ingestion
 - Stomach acid triggers life cycle

- **Trophozoites**
 - 9-21 um long
 - 5-10 um wide
 - 2-4 um thick
 - Attaches to intestines

Giardiasis (Giardia intestinalis)

Contamination of water, food, or hands/fomites with infective cysts.

Trophozoites are all passed in stool but they do not survive in the environment.

Cysts

= Infective Stage

= Diagnostic Stage

US CDC/Health Canada
GIARDIA LAMBLIA

- Cysts
 - Environmentally stable
 - Passed in faeces
 - Ingestion
 - Stomach acid triggers life cycle

- Trophozoites
 - 9-21 um long
 - 5-10 um wide
 - 2-4 um thick
 - Attaches to intestines

US CDC/Health Canada
Giardiasis
(Giardia intestinales)

Contamination of water, food, or hands/objects with infective cysts.

1. Cysts
2. Infective Stage
3. Diagnostic Stage
4. Trophozoites
5. Cyst

US CDC

CY: Cysts; TR: Trophozoites; fl: Flagella

HydroQual Laboratories Ltd.
GIARDIA LAMBLIA

- Cross Canada Survey
 - 162 raw sewage samples
 - 52% contained cysts
 - 1 – 88,000 cysts/L
 - 1215 raw/treated drinking water samples
 - 10% contained cysts
 - 0.001 – 2 cysts/L

GIARDIA LAMBLIA

- Edmonton, Alberta
 - Raw water (1990 – 1996)
 - 8 – 193 cysts/100 L
 - 1997 – heavy spring run off
 - 2500 cysts/100 L of raw water
 - 24 cysts/1000 L of treated water → water advisory

- Minimum infective dose: 1- 10 cysts
 - ID\(_{50}\): 19 cysts

GIARDIA LAMBLIA

- Treatment methods
 - Chlorination
 - Filtration

- Standard treatment methods are effective during normal conditions

- May decrease during isolated events
 - Spring run off
 - Power outage

US CDC
What are they?
- Cryptosporidium → Hidden spores
- Protozoan parasites → human pathogens

Hardy Cysts
- Survive lengthy periods outside of host
- Environmentally stable
- Resistant to treatment
 - Specifically Chlorine based
 - Standard filtration → 99% removal
CRYPTOSPORIDIUM

- Global Disease
 - Developed → 1 - 4.5%
 - Developing → 3 - 20%
 - Immunocompromised
 - US → 3 - 20%
 - Africa/Haiti → 50 - 60%
- Daycares
- Swimming Pools

- Outbreaks
 - Canada - North Battleford, Saskatchewan (2001)
 - United States - Milwaukee (1993)
CRYPTOSPORIDIUM

- Transmission
 - Fecal - Oral
 - Person to person
 - Animal to person
 - Foodborne
 - Waterborne

- Ingestion → Cryptosporidiasis
 - Self limiting
 - Immunocompromised
CRYPTOSPORIDIUM

- **Cysts**
 - Environmentally Stable
 - Passed in faeces
 - Ingestion → Excystation

- **Sporozoites**
 - Attaches to the epithelial surface of the GI tract

CDC: www.marvistavet.com/html/body_cryptosporidium.html
CRYPTOSPORIDIOUM

- **Cryptosporidiosis**
 - Cysts
 - Environmentally Stable
 - Passed in faeces
 - Ingestion \rightarrow Excystation

- **Sporozoites**
 - Attaches to the epithelial surface of the GI tract \rightarrow illness

Image credits: CDC; jhyoung.myweb.uga.edu
Cryptosporidium

- **Prevalence**
 - Wastewater → 3.3 - 20,000/L
 - Surface waters receiving agricultural or wastewater discharges → 0.006 - 2.5/L
 - Pristine surface water → 0.02 - 0.08/L
 - Drinking water → 0.006 - 4.8/L
 - Recreational water → 0.66 - 500/L

Cryptosporidium

- Cross Canada Survey
 - 162 raw sewage samples
 - 11.1% contained oocysts
 - 1 - 120/L
 - 1215 raw/treated drinking water sample
 - 6.4% contained oocysts
 - 0.001 - 0.005 oocysts/L

- Canada
 - 1 - 100 oocysts/100 L up to 10 300 oocysts/100 L

- Infection: ID$_{50}$: 132 oocysts

Wallis et al., 1995 Risk assessment for waterborne giardiasis and cryptosporidiasis in Canada. Unpublished report to Health Canada

CDC; jhyoung.myweb.uga.edu

Health Canada
What does this mean?
- The Canadian Drinking Water Guidelines
 - Do not require analysis
- Analysis is recommended
 - Human pathogen
 - Due Diligence
 - Important to assess the source water to determine the number of organisms present
- Efficacy of treatment
- Dictate treatment level
 - Spring runoff
CRYPTOSPORIDIUM & GIARDIA

- Testing methods
 - USEPA method 1623.1
 - Filtration
 - Elution/Concentration
 - Immuno-magnetic separation (IMS)
 - Fluorescence staining
 - Enumeration

- Factors affecting recovery rates
 - Methodology
 - Previous methods → 10% recovery
 - New method → 50-60% recovery
 - Turbidity/Matrix interference
 - Addition of dispersants
Cyanobacterial Toxins - Microcystin-LR
What are they?
- Blue-green algae
- Form in shallow, warm slow moving or still water
- Cells → cyanobacterial toxins
 - Neurotoxins → anatoxins
 - Hepatotoxins → microcystins
 - Skin irritants
 - Other toxins
What are they?

- Blue-green algae

- Form in shallow, warm slow moving or still water

- Cells → cyanobacterial toxins
 - Neurotoxins → anatoxins
 - Hepatotoxins → microcystins

- Skin irritants
- Other toxins
MICROCYSTIN

- Occurrence of Blooms
 - Hot summer Months
 - Prevalent in prairies

- Cyanobacterial bloom formation
 - physical (temperature, turbidity)
 - chemical (availability of macronutrients, e.g. phosphorous)
 - biological factors (competition for nutrients)
 - Year around
MICROCYSTIN - HEPATOTOXINS

- Common - Microcystin-LR
 - Microcystis aeruginosa and other blue-green algae.

- Highly stable toxin → chemical structure
 - Water
 - Temperature fluctuations
 - Changes in water chemistry

- Most toxic → LD$_{50}$ of 50 µg/kg bodyweight.
MICROCYSTIN - HEPATOTOXINS

- The Canadian Drinking Water Guideline
 - The maximum acceptable concentration (MAC) for the cyanobacterial toxin microcystin-LR in drinking water is 0.0015 mg/L (1.5 ug/L).

- World Health Organization
 - 1.0 ug/L
MICROCYSTIN - HEPATOTOXINS

- Occurrence - Cyanobacterial
 - Most common genera in Canada
 - Anabaena, Aphanizomenon, Microcystis, Oscillatoria and Nodularia

- Toxicity
 - Temporal
 - Spatial

- 50-75 % of bloom isolates → Toxins
- No obvious way of determining bloom toxicity

Finnish Institute of Marine Research

Estuarine, Coastal and Shelf Science, March (2006); 67(1-2): 108 - 122
MICROCYSTIN

Prevention

What to do

- Nutrient deprivation through good watershed management.
- Addition of chemicals to reduce nutrient availability (e.g. ferric sulphate to precipitate phosphorous).

What not to do

- Addition of an algicide (copper sulphate - blue stone)
MICROCYSTIN

- Prevention
- Monitoring

- Drinking water supplies suspected or known to be susceptible to blooms should be routinely monitored for presence of cyanobacteria (identification or enumeration) and their toxins.
MICROCYSTIN

- Prevention

- Treatment Technology
 - Conventional water treatment processes
 - Successful → Removing cells
 - Partially successful → Removing/destroying toxins.
 - Combination treatment → Preferred
 - Conventional treatment + oxidant + biologically activated GAC
MICROCYSTIN - TESTING

- Protein Phosphatase Inhibition (PPI)
 - Highly sensitive
 - Not Specific
 - Screening tools

- Liquid chromatography mass spectroscopy (LC-MS)
 - Sensitive
 - Specific → identification of variants
 - Screening/Confirmatory tool
 - Expensive

Massachusetts Department of Environmental Protection
MICROCYSTIN - TESTING

- ELISA based method
 - Highly sensitive
 - Not Specific
 - Rapid (3 hours)
 - Screening tool

- Positive Drinking water results
 - Confirmation with LC-MS
Legionella
LEGIONELLA

- Gram negative bacterium
 - Water sources
 - 25°C - 45°C
- Human pathogens
 - Respiratory illness --> immunocompromised
- American Legion outbreak - 1976
 - 221 Infected → 34 deaths
LEGIONELLA – Legionnaires’ Disease

- Legionnaires’ disease
 - Inhalation
 - Droplets
 - Mist
 - Steam
- Symptoms
 - Fever
 - Chills
 - Headache
 - muscle pain
 - Respiratory
 - Vomiting
 - altered mental status
- 10-15% mortality rate
LEGIONELLA - Pontiac fever

- Pontiac fever causes a flu-like illness.
- Caused by inhalation of Legionella pneumophila.
- The symptoms include fever, lack of appetite, headache, and aching muscles.
- Pontiac fever is not associated with pneumonia. In most cases no treatment is required, and you will recover within two to five days.
- 50-80% attack rate after exposure.
Where is Legionella found?

- Ubiquitous
- Ground and surface water
- Plumbing systems
- Respiratory therapy
- Whirlpool baths and hot tubs,
- Humidifiers
- Cooling towers of large air-conditioning systems → IDEAL
Legionella - Ecology

- Survival
 - tap water
 - chlorinated and untreated water
 - stagnant water areas (water heaters, tanks, reservoirs)
 - Sediment, sludge and organic materials can harbor and promote growth
<table>
<thead>
<tr>
<th>Temperature Range</th>
<th>Condition</th>
<th>Environments</th>
</tr>
</thead>
<tbody>
<tr>
<td>70-100°C</td>
<td>Killed</td>
<td>Hot water, Warm water</td>
</tr>
<tr>
<td>60-70°C</td>
<td>Killed in time</td>
<td>Warm water, Spa pool, Heated pool, Cooling tower, Cold water</td>
</tr>
<tr>
<td>20-55°C</td>
<td>Multiplication</td>
<td>Warm water, Spa pool, Heated pool, Cooling tower, Cold water</td>
</tr>
<tr>
<td>0-20°C</td>
<td>Dormant</td>
<td>Cold water, Evaporative air cooler, Spray humidifier, Cold water main, Air cooling coil condensate</td>
</tr>
</tbody>
</table>
Legionella - Ecology

- Biofilms → difficult to remove
- Biofilms form as a thin layer of slime on surfaces in contact with water
- Able to grow in iron rich, oxygen low environments
- Incorporate other bacteria and protozoa that act as a shield to protect the Legionella from biocides
How do you test for Legionella?

- Swabs
 - Sludge, sediment, scale, shower heads, etc

- Water Samples
 - 1L sample needed in sterile/DNA free bottles
What test methods does HydroQual offer?

- DNA methods
 - Polymerase chain reaction (PCR)
 - Quick turn around time

- Culture methods
 - Viable Legionella
 - Identify serotype
 - 15 serotypes-type
 - 1,3 and 6 most severe
Legionella

- Prevention
 - Source Water maintenance (e.g. Water Safety Plan)
 - System design (i.e. dead legs)
 - Maintaining disinfection levels (i.e. 0.5 mg/L throughout the system)
Legionella

- Monitoring
 - Investigation of an outbreak
 - Validation of the effectiveness of control measures
 - Verification of the effectiveness of decontamination.
 - Recommended for cooling towers, hot tubs and water distribution systems (e.g. health care facilities)
THANK YOU

CONTACT INFORMATION:

Charles Ehman, B.Sc

Email: charles_ehman@golder.com
Phone: (403) 253-7121