

SHALE GAS WATER MANAGEMENT

PATRICK HORNER, P.Eng

WaterTech 2012 Banff, Alberta April 11, 2012

SHALE GAS

WHY WATER MANAGEMENT?

- US Shale Gas Reserve: 353 Trillion Cubic Feet
- Shale Gas made up 19% of total US NG Consumption in 2009 and expected to rise to 45% by 2035.
- Shale Gas Requires Horizontal Wells and Hydraulic Fracturing
- Hydraulic Fracturing of Horizontal Wells requires 275 times the water of Fracturing Conventional Vertical Wells.

WATER MANAGEMENT IS CRITICAL TO SHALE GAS

NATURE OF FLOWBACK

FACTORS → **QUALITY AND QUANTITY**

3 – FORMATION GEOCHEMISTRY

4 – FRAC COMMUNICATION WITH ADJACENT AQUIFERS

FLOWBACK ANALYSIS = 1 + 2 + 3 + 4 + 5 (VARIABLES ARE NEVER EXACTLY THE SAME)

NATURE OF FLOWBACK

FLOWBACK TDS vs VOLUME PROFILE

NATURE OF FLOWBACK

COMPOSITION

•Dissolved Salts			Fayetteville	Marcellus	Barnett
•Dissolved Minerals	Na	(mg/L)	5362.6	24445.0	12453.0
•Frac Chemicals	Mg	(mg/L)	77.3	263.1	253.0
Polymers (0 − 500 mg/L)Bacteria: (BOD 0 - 100 mg/L)	Ca	(mg/L)	256.3	2921.0	2242.0
•TSS (200 – 1000 mg/L)	Sr	(mg/L)	21.0	347.0	357.0
•NORM (0 – 15 pCi/L gross A)	Ba	(mg/L)	0.8	679.0	42.0
•VOC (0 – 10 mg/L)		(mg/L)			
•SVOC (0 – 100 mg/L)	Mn		0.5	3.9	44.0
•Hydrocarbons (0 – 50 mg/L)	Fe	(mg/L)	27.6	25.5	33.0
•Ammonia (0 – 150 mg/L)	SO4	(mg/L)	149.4	9.1	60.0
•Carbonate Scales	HCO3	(mg/L)	1281.4	261.4	289.0
•Sulphate Scales	Cl	(mg/L)	8042.3	43578.4	23797.5
•Silica Scales					
CHANGES FROM		(mg/L)			
PLAY TO PLAY	TDS		15,219	72,533	39,570
WELL TO WELL					
DAY TO DAY	S.G.		1.010	1.050	1.030

WATER MANAGEMENT DECISION FACTORS

THE BALANCING ACT

- PUBLIC SAFETY
- COMMUNITY RELATIONSHIPS
- REGULATORY CLIMATE
- ENVIRONMENTAL RISK / LIABILITY
- SHARED ACCESS TO WATER AND DISPOSAL
- WATER MANAGEMENT COSTS
- FRAC FLUID QUALITY
- LONG TERM WELL PERFORMANCE

WATER MANAGEMENT DECISION FACTORS

KEY CRITERIA

- FLOWBACK CHEMISTRY
- SOURCE WATER
- DISPOSAL
- STORAGE
- TRANSPORTATION
- TREATMENT TECHNOLOGY
- FRAC WATER SPEC

? AVAILABILITY / OPTIONS / COST / RISKS ?

WATER MANAGEMENT STRATEGIES

DISPOSAL

WATER MANAGEMENT STRATEGIES

RE-USE

WATER MANAGEMENT STRATEGIES

RECYCLE

CASE STUDY 1

BARNETT: RECYCLE → **FRAC**

LIMITED FRESH WATER + URBAN COMMUNITY

- 10,000 BPD LEVEL 5 INFIELD RECYCLING FACILITY (PRE-TREATMENT + NOMAD MVR EVAPORATOR)
- FLOWBACK RECYCLED AND BLENDED WITH MAKE-UP FOR NEXT FRAC.
- KEY DRIVERS:
- REDUCE WATER USE (LIMITED AVAILABILITY)
- REDUCE TRUCKING (COMMUNITY IMPACT)
- REDUCE ENVIROMENTAL LIABILITY (LOW TDS TRANSPORT AND STORAGE)

CASE STUDY 2

MARCELLUS: RECYCLE → DISCHARGE

NO LOCAL DISPOSAL OPTION

- 7,500 BPD LEVEL 5 NEAR FIELD DISPOSAL FACILITY (PRE-TREATMENT + NOMAD MVR EVAPORATORS)
- FLOWBACK AND
 PRODUCED WATER
 TREATED FOR DISCHARGE
 TO MUNICIPLE WWTP (TDS
 <100 ppm)
- KEY DRIVERS:
 - REDUCE HIGH DIPOSAL COSTS (HIGH TRANSPORT COSTS TO OUT OF STATE DISPOSAL WELL)

CASE STUDY 3

EAGLEFORD: RE-USE → FRAC

- 10,000 BPD LEVEL 1 IN FIELD MOBILE TREATMENT UNIT (ROVER)
- FLOWBACK AND
 PRODUCED WATER
 TREATED AND BLENDED
 WITH MAKE-UP WATER
 FOR RE-USE
- KEY DRIVERS:
 - LIMITED
 TRANSPORATION
- REDUCE DISPOSAL
- REDUCE FRESH WATER
 CONSUMPTION

HIGH TRANSPORATION COSTS

THE AQUA-PURE ADVANTAGE:

- -16,000,000 bbls of Commercial Shale Gas Water Treatment Experience
- Over 12 different technology pilots (what works where)
- Commercial experience in 4 different shale plays
- Over 16 Commercial Facility Installations
- Operational equipment ready for deployment
- Third Party Technology Performance Validation (by GTI)
- Engineering services to adapt and customize solutions
- Full Service Water Management Solutions

FOLLOW-UP

CONTACT:

Patrick Horner, P.Eng VP Engineering Aqua-Pure Ventures

(403) 301-4123 ext 28 horner@aqua-pure.com