

Naphthenic Acids in the Environment: State of the Union

D.A. Birkholz, MSc, PhD, P.Chem

Why the Concern?

- The oil sands (OS) in northeastern Alberta are the second largest proven oil deposit on Earth (1.7 trillion barrels with 173 billion economically recoverable)
- •Industrial production of crude oil from OS is estimated at more than 1.3 million barrels per day covering 530 km²
- •Oil sands process-affected water (OSPW) take up ~20% of the area (130 km²)
- Production of crude oil from OS will reach 2.9 million barrels per day by 2020
- •It is estimated that greater than 1 billion m³ of OSPW are currently stored on-site in various settling basins.

Why the Concern?

- The ponds will need to be reclaimed, however, they contain a recalcitrant group of compounds known as naphthenic acids (NAs) which are toxic.
- Natural half -lives of NAs in OSPW is 12.8-13.6 years
- OSPW is acutely and chronically toxic to aquatic organisms including fish. Endocrine effects have been observed (alterations T/E2 steroidogenesis)
- Comparison of estrogenicity and antiandrogenic response of NAs derived from Merrichem (petroleum derived) and OSPW reveal OSPW more estrogenic and antiandrogenic (cell line work)
- NAs have been been the target of remediation efforts
- There is concern of off-site migration of NAs (dike seepage, groundwater intrusion, etc) and impact on the aquatic environment

Naphthenic Acids

 Comprise a complex mixture of alkyl-substituted acyclic and cycloaliphatic carboxylic acids, with the general chemical formula

$$C_nH_{2n+z}O_2$$

- Where, n = carbon number; Z is zero or a negative, even interger that specifies the hydrogen deficiency resulting from ring formation
- The rings may be fused or bridged
- For each n and Z combination there are numerous isomers of unknown molecular structure, thus complicating accurate characterization and quantification
- The acylic components are highly branched
- pKa = 5-6
- Partition from an oil phase into an aqueous phase at neutral or alkaline pH
- Bioconcentration factor in fish is 2

CO₂H

Strausz and Lowen, 2003 p 193

$$Z = -2$$

Z = 0

$$Z = -4$$

$$Z = -6$$
 CO_2H

$$Z = -8$$

$$Z = -10$$

Rowland et al, 2011

GC*GC/TOF

1.6 billion theoretical plates

Sources of Naphthenic Acids (A.)

- Are natural components of petroleum
- Petroleum acids in crude oils range from undetectable to 3% by weight
- Average concentration in seven oil sands ore from Syncruce Canada Ltd (SCL) was 200 mg/kg
- Syncrude processes about 500,000 tonne of ore each day (SCL, 2000)
- There is the potential to release 100 tonne of naphthenic acids from the ore each day.
- Ref: Clemente and Fedorak (2005). <u>Chemosphere</u>, 60: 585-600

Tailings Ponds

- Tailing pond waters contain 20 120 mg/L of naphthenic acids
- The oil sands companies operate under a zero discharge policy, thus none of these waters can be intentionally released to the environment, and much of the water is recycled through the extraction process
- However, when the oil sands operations cease (in about 50 years), all of the disturbed land and the process-affected waters will have to be reclaimed, and the concentrations of naphthenic acids reduced to below toxic levels (< 0.15 mg/L)
- Decades of storage in tailings ponds under various conditions have not proven effective at decreasing NA concentrations to below 20 mg/L

Tailings Ponds

- Storage of tailings water represents a temporary solution but is a substantial cost to the industry, and the risk of large spills of NAs leaching into surrounding aquatic environments (detected in groundwater) grows with the size of the industry.
- Stores of OSPW already exceed 1 billion m³
- A more sustainable solution would be to reduce the toxicity of these aqueous tailings: thus, there is an urgent need to understand the fate of NAs under a variety of engineered scenarios

Toxicity of Naphthenic Acids

- Naphthenic acids are believed to be some of the most toxic components of refinery effluent and oil sands tailings water
- Concentrations > 2.5 5 mg/L in refinery effluent would be toxic to fish
- Naphthenic acids are quite soluble in neutral or slightly alkaline waters, thus aquatic organisms are readily exposed to the toxic effects of the dissolved naphthenates
- LC₅₀ 2-month-old chum salmon = 25 mg/L
- LC_{50} 2-month-old kutum, roach fingerling and 2-year-old sturgeon = 50 mg/L
- LC₅₀ 2-year-old roach and Caspian round goby = 75 mg/L
- Physiological and biochemical parameters (leukocyte and glycogen levels)
 found to be impacted in fish exposed to 0.5 5 mg/L naphthenic acids
- Zooplankton (Nephargoides maeoticus) maximum allowable concentration
 = 0.15 mg/L
- Reference: Clemente and Fedorak (2005). Chemosphere ,60: 585-600

Toxicity of Tailings Water

- LD₅₀ Daphnia magna = 2% v/v (EC50 2.4 mg/L (120 mg/L)
- LD_{50} rainbow trout = 7% v/v (EC₅₀ 8.4 mg/L (120 mg/L)
- IC₅₀ Microtox = 41.9 64.9 mg/L depending on MW
- IC₂₀ Microtox = 10% v/v more reproducible than trout and *Daphnia magna*
- Because of these observations and its relatively low cost, Microtox (Vibrio fischeri) has commonly been used to monitor toxicity of the oil sands tailings water and naphthenic acid solutions.
- Reference Clemente and Fedorak (2005) Chemosphere 60: 585-600

Toxicity of Commercial Naphthenic Acids

Commercial Acid	EC ₅₀ – 15 min (conf. interval)	EC ₂₀ – 15 min
#387 Merichem	5.4 – 7.2 (3.4 – 10.6)	2.7
#388 Aldrich	10.4 – 11.7 (8.3 – 13.0)	5.1
#389 Chem Service	6.6 (5.8 – 7.6)	3.1

Reference: ALS Data

MERRICHEM

ALDRICH

CHEM SERVICE

Biodegradation of Naphthenic 🔔 **Acids**

- Petroleum based (refined) naphthenic acids biodegrade differently than oil sands derived naphthenic acids
- Refined NAs degrade faster than oil sands derived naphthenic acids (e.g. Merichem $t_{50} = 1-8$ days)
- OSPW (oil sands process water Syncrude) biodegradation proceeds much more slowly. $T_{50} = 44 - 240$ days
- Commercial naphthenic acids completely biodegrades completely with 14 days
- Only 25-30% of total NAs in OSPW were removed after 40-49 days
- The difference in the recalcitrance of commercial NAs and OSPW NAs is hypothesized to be a function of relatively high alkyl branching of OSPW NAs compared to petroleum derived (refined) naphthenic acids

Biodegradation

- Weight of evidence currently suggests that a high degree of alkyl branching is the principal factor that differentiates easily biodegradable commercial NAs from persistent OSPW NAs
- Among highly branched NAs, cyclization remains a major factor contributing to persistence: Z=-2 < Z=-4 < < Z=-6 < Z=-8
- β-oxidation is the preferred route by which most microorganisms degrade aliphatic and alicyclic carboxylic acids and, thus, is the most likely mechanism by which biodegradation occurs
- Other mechanisms include α -oxidation and aromatization

Chemical Formula: C₁₄H₂₄O₂ Exact Mass: 224.17763

n=14, Z=-4

Unbranched

$$\begin{array}{c|c} \mathsf{H}_3\mathsf{C} \\ \hline & \mathsf{C}_2\mathsf{H}_5 \\ \hline & \mathsf{C}_\mathsf{H}_3 \\ \hline & \mathsf{C}_\mathsf{C}_\mathsf{H}_5 \\ \mathsf{C}_\mathsf{2}\mathsf{H}_5 \\ \mathsf{OH} \end{array}$$

Chemical Formula: C₂₀H₃₆O₂ Exact Mass: 308.27153

N=20 Z=-4

Branched

Johnson et al (2011) The ISME Journal 5: 486-496

EC50 mg/L

4'-n-butylphenyl-4-butanoic acid

 18.8 ± 0.65

4'-iso-butylphenyl-4-butanoic acid 14.7 ± 0.68

$$H_3C$$
 CH_3
 OH

4'-sec-butylphenyl-4-butanoic acid 39.6 ± 5.21

$$H_3C$$
 CH_3
 CH_3
 CH_3

4'-tertbutylphenyl-4-butanoic acid 9.4 ± 0.66

Johnson et al (2011) The ISME Journal 5: 486-496

MICROTOX

EC50 mg/L

4'-n-butylphenylethanoic acid

 43.0 ± 0.75

4'iso-butylphenylethanoic acid 69

 69.2 ± 1.04

$$H_3C$$
 CH_3

4'sec-butylphenylethanoic acid NA

4'-tert-butylpenylethanoic acid 25.9 ± 0.71

4'-n-butylphenyl-4-butanoic acid

Johnson et al, 2011

4'-carboxybutylphenylethanoic acid

Biodegradation

- Least branched n-BPBA completely degraded in 49 days
- More branched iso, sec, and tert-BPA isomers only metabolized as far as respective ethanoic acids by 49 days
- Increase in alkyl chain branching reduced biotransformation of BPBA
- Results suggest that the more refractory NAs found in OSPW may include branched alkyl phenylethanoic acids
- Tert-BPA was more toxic than n-, iso- and sec-BPBA
- Although the ethanoic acid metabolites produced during BPBA degradation were less toxic than the parent compounds, they were nonetheless toxic EC50 25-69 mg/L
- Our research on nonylphenol ethoxylates suggests that the di-carboxy napthenic acids may be more endocrine disrupting

Reference: Di Corcia et al (2000). Environ. Sci. Technol. 34: 3914-3919

CAPECs (Carboxyl Alkyl Phenol Ethoxy Carboxylates)

- Laboratory biodegradation tests show that CAPECs with 3-8 carbons are recalcitrant. (Di Corcia et al (2000)
- Persisted in test liquor 5-months after their generation (Di Corcia et al (2000)
- Analysis of sewage treatment plant effluent showed CAPECs as a total accounted for 63% of the total A9PE breakdown products leaving the plant. (Di Corcia et al (2000)
- Very endocrine disrupting (YES assay)

Analytical Methods

- There is currently <u>no method that identifies or</u> <u>quantifies individual acids</u>. This would be highly desirable.
- The complex nature of NA mixtures and the complex mixture of the associated organic compounds provide an analytical challenge.
- Thus, all presently used analytical methods treat these acids as a group, or as sub-groups based on carbon and Z numbers
- It is desirable to have a method that can tell us whether certain naphthenic acid groups (n and Z) are responding to a particular treatment and whether these changes are consistent with decreasing toxicity

Fourier Transform Infrared (FTIR) Spectroscopy

- Briefly, aqueous samples are acidified and the naphthenic acids are quantitatively extracted into dichloromethane.
- After concentrating the extract, the sample is analyzed by FTIR and the absorbances of the monomeric and dimeric forms of the carboxylic groups (at 1743 and 1706 cm⁻¹, respectively) are measured.
- The sum of these absorbances is compared to those in a calibration curve (commercial naphthenic acids) obtained from the FTIR analyses of solution prepared with a commercially available naphthenic acid preparation.
- Minimum detection limit is one to a few tenths of a milligram per liter.

Octanoic acid

the carbonyl (C=O) absorption between 1690-1760cm-1; this strong band indicates either an aldehyde, ketone, carboxylic acid, ester, amide, anhydride or acyl halide.

FTIR Method (Syncrude Canada, 1995) (As Merrichem NAs

FTIR vs GC/MS

Sample	Naphthenic Acids GC/MS (mg/L)	Naphthenic Acids FTIR (mg/L)	Ratio: FTIR/GC-MS
North Saskatchewan River	<0.01	0.14	>14
Athabasca River	<0.01	0.29±0.08	>29
Domestic Well #12	0.13±0.05	0.99±0.3	7.6
Domestic Well #13	0.025±0.007	0.3	12
Fresh Water Reservoir	0.099±0.045	0.53±0.06	5.4
Tailings Pond	17	45	2.6
Tailings Pond	4.0	17	4.2
SAGD	21	120	5.7
SAGD	110±57	100	0.91

Reference: Scott et al (2008) Chemosphere 73: 1258-1264

FTIR

- Is a good and inexpensive quantitative method for OSPW, but appears to <u>overestimate</u> the naphthenic acids in river waters (not useful for RAMP)
- Current FTIR method gets DLs in the order of 1 mg/L
- For lower levels suggest using the GC/LRMS method
- This method is not appropriate for forensics

Mass Spectrometry Method of Choice

- Negative ion electrospray mass spectrometry ESI-LRMS and ESI-HRMS (TOF and Orbitrap)
- Gas chromatography mass spectrometry dimethyl-butyl-silyl-esters
- The formation of the t-butyldimelthylsilyl esters was chosen because when subjected to electron impact the esters predominantly yield (M+57)⁺ ions where M is the mass of the underivatized naphthenic acid.
- GC/LRMS is used because can scan for 167 ions.
 GC/HRMS is used for selected ions only

Mass Spectrometry Methods

- Give similar forensic profiles for petroleum (refined) naphthenic acids – irrespective of method
- Low resolution methods (GC/MS and or LC-ESI-LRMS) give <u>profoundly different profiles</u> when compared against high resolution methods (LC-ESI-HRMS and GC-HRMS) <u>for OSPW samples</u>
- This observation raises a question as to what low resolution methods are measuring besides naphthenic acids?

Bataineh et al (2006). Anal Chem. 78: 8354 - 8361

Bataineh et al (2006). <u>Anal. Chem</u>. <u>78</u>: 8354 - 83

N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide

Chemical Formula: C₁₄H₂₄O₂ Exact Mass: 224.17763

MTBSTFA

Chemical Formula: C₂₀H₃₈O₂Si

Chemical Formula: $C_{16}H_{29}O_2Si^+$

Exact Mass: 281.19313

$$n=14, Z=-4$$

Martin et al, 2008, Rapid Comm. Mass. Spectrom.

22: 1919-1924

Comparison of Methods

39

Negative ion ES extract of tailings pond water

Compound of formula C₁₆H₂₇O₂

$$C=16, Z=-4$$

on low resolution instrument Electrospray ionization Fourier transform ion

> cyclotron resonance mass spectrometry

FTICR-MS

Table 3. Summary of peak counts from ESI-FT-ICR MS analyses for formula $C_nH_{2n+Z}O_{x_0}$ x=2 to 5 and for sodium dimers. Acids containing the ^{13}C isotope are included.

	Total	$C_nH_{2n+Z}O_x$					Sodium dimers	
	number	x = 2	x = 3	x = 4	x = 5	Percent of	Numbe	Cumulative
	of	Number of	Number of	Number of	Number of	Total	rof	Percent of
	peaks	peaks	peaks	peaks	peaks	number of	peaks	Total number
Sample		•	•	•	•	peaks*	•	ofpeaks ^b
Merichem	1597	91	13	16	1	8	74	12
Acros	303	58	0	6	0	21	41	35
Kodak	886	86	8	18	5	13	56	20
MLSB	1849	102	73	65	23	14	53	17
WIP	1312	83	55	47	19	16	28	18
Pond 9	1680	75	61	57	40	14	32	16
Demo Pond	1691	95	76	67	42	17	39	19
Pond 2/3	1416	98	67	54	12	16	59	20
Pond 5	1873	95	84	73	44	16	38	18
SAGD	1883	83	75	101	26	15	23	16
Albian pond	1497	89	67	53	23	15	32	18
Athabasca	1605	65	71	69	46	16	15	17
River								
Gregoire Lake	1771	50	59	63	54	13	9	13
N. Sask. River	1316	19	26	51	43	11	0	11
Red Deer	1687	57	71	74	56	15	19	16
River								
Bow River	1624	66	73	73	55	16	24	18
S. Sask. River	1601	60	73	75	60	17	14	18

^a Based on sum of peaks with x = 2 to 5. ^b Based on sum of peaks with x = 2 to 5 plus number of sodium dimers.

Table 4. Relative abundance of peaks with formula $C_nH_{2n+Z}O_{x_0}$ x = 2 to 5 and of sodium dimers from ESI-FT-ICR MS analyses. Acids containing the ¹³C isotope are included.

				Sodium dimers				
	Total Abund.	x = 2	x = 3	x = 4	x = 5	Sum* of	(%) of	Cumulative sum ^b of
	of peaks	(%) of Total	Total Abundance	sum of (%) of				
	$(x10^6)$	Abundance	Abundance	Abundance	Abundance	Abundance		Total
Sample								Abundance
Merichem	2232	43.5	0.1	0.2	0.0	43.9	3.2	47.1
Acros	215	33.2	0.0	0.9	0.0	34.1	22.1	56.2
Kodak	759	41.8	0.3	0.9	0.1	43.1	4.3	47.4
MLSB	2032	28.6	7.5	3.8	0.4	40.3	2.2	42.5
WIP	951	24.4	7.4	3.8	0.5	36.1	1.9	38.0
Pond 9	1782	10.7	16.3	9.1	1.7	37.7	1.0	38.7
Demo Pond	1743	17.0	17.2	11.2	2.0	47.4	1.6	49.0
Pond 2/3	1165	35.6	6.9	3.1	0.3	45.9	2.2	48.1
Pond 5	2033	19.8	13.8	7.7	1.4	42.7	1.6	44.3
SAGD	1866	14.2	6.8	8.4	0.5	29.9	0.6	30.5
Albian pond	1295	19.5	10.3	5.8	0.6	36.2	1.5	37.7
Athabasca River	1362	10.6	4.5	7.6	6.9	29.7	0.8	30.5
Gregoire Lake	1727	5.5	3.3	7.4	7.7	23.9	0.3	24.2
N. Sask. River	876	2.3	0.9	3.2	3.9	10.2	0.0	10.2
Red Deer River	1304	16.0	4.7	5.8	3.9	30.5	1.3	31.8
Bow River	1344	17.7	5.9	6.5	4.9	35.0	1.8	36.8
S. Sask. River	1308	14.7	5.5	7.2	5.3	32.7	1.2	33.9

^a Based on sum of peaks with x = 2 to 5.

^b Based on sum of peaks with x = 2 to 5 plus number of sodium dimers.

Recommendations

- Grewer et al (2010)
- HPLC-HRMS (Martin et al, 2008) clearly demonstrated that HRMS is superior to unit mass, low-resolution MS for accurate assignment of congeners to classical naphthenic acids
- HPLC/HRMS may be the best compromise between cost and accessibility for monitoring naphthenic acids in the environment.
- With use of Thermo Orbitrap can achieve 200,000 resolution of naphthenic acids

Why Not GC/HRMS

- GCxGC/TOF (1.6 billion theoretical plates of separation) provided the best data to date on structures of naphthenic acids.
- ESA scanning the best option for accurate mass but limited mass range requiring several runs. There are cost and TAT implications – Not a good option
- Selected ion-monitoring is a best option but <u>need to decide</u> <u>on which ions to use</u>

ı	Carbon				7 family			
	Carbon number				Z - family		10	12
$\ $		0	-2	-4	-6	-8	-10	-12
ŀ	5	159						AL
ŀ	6	173	_					
ļ	7	187	185					
ļ	8	201	199					
	9	215	213					
	10	229	227	225				
	11	243	241	239				
	12	257	255	253	251			
	13	271	269	267	265	263		
İ	14	285	283	281	279	277		
Ī	15	299	297	295	293	291		
Ī	16	313	311	309	307	305	303	
Ì	17	327	325	323	321	319	317	
Ī	18	341	339	337	335	333	331	329
ı	19	355	353	351	349	347	345	343
İ	20	369	367	365	363	361	359	357
Ì	21	383	381	379	377	375	373	371
İ	22	397	395	393	391	389	387	385
İ	23	411	409	407	405	403	401	399
İ	24	425	423	421	419	417	415	413
İ	25	439	437	435	433	431	429	427
İ	26	453	451	449	447	445	443	441
Ì	27	467	465	463	461	459	457	455
Ì	28	481	479	477	475	473	471	469
Ì	29	495	493	491	489	487	485	483
	30	509	507	505	503	501	499	497
	31	523	521	519	517	515	513	511
	32	537	535	533	531	529	527	525
	33	551	549	547	545	543	541	539

Semi-Quantitative Analysis for As Naphthenic Acids - GC/HRMS

- Surrogate is added to an aliquot
- Acidify (pH<2) and add 150 g NaCl
- Extract with dichloromethane
- OR Solid Phase Extract Using HLB-Oasis RAMP
- Surrogate is added
- Derivatize using MTBSTFA
- Add internal standard
- Analyze by GC/HRMS
- Detection limit 1 10 ug/L

Mass Resolution

- LC-ESI-QTOF can analyze at 10,000 resolution. Newer models can operate at 15,000 resolution
- Newer Agilent and AB Sciex claims 40,000 resolution
- Thermo Orbitrap claims 200,000 resolution
- The way resolution is determined on the QTOF vs GC/HRMS is very different – which may explain any differences we observe

Ion 267 curve at 10,000 resolution

Sum of Ion curve at 10,000 resolution

GC/HRMS vs FTIR

Sample I.D.	Sum of ions mg/L	m/z 267 mg/L	FTIR mg/L
L1074277-1	23.6	21.7	42.0
L1074277-2	26.4	25.2	37.2
L1074283-6	15.2	16.5	26.7
L1074995-6	14.9	12.1	16.1
OSPW	34.3	31.1	

m/z 267 n=13, Z=-4

Industries View

- Validated and accepted method (used by monitoring laboratories)
- Validated and accepted method to fingerprint sources "forensics" in the case of detection
- From an impact assessment perspective, data is meaningless without toxicology to tell us what the numbers mean, i.e. is there going to be an adverse impact?
- Proof that the method is related to oilsands by analyzing municipal effluent, pulp and paper effluent, etc.
- If we are going to sample rivers the industry wants to be convinced that the method is unique to oilsands operations.

Where Do We Go From Here

- Workshop held and analytical chemistry and toxicity discussed
- Proceedings and short papers will be published
- Common reference standard for calibration (chemistry and toxicity) was agreed upon
- Round robin samples are being prepared and labs have been invited to participate
- Results will be published
- More workshops to be held to gleen a consensus on appropriate analytical methods
- KEEP TUNED!

ALS Laboratory Group

Environmental Testing Services

Performance is Everything!™

Contact Information

deib.birkholz@alsglobal.com

780-391-2330 (direct)

780-914-2459 (cellular)