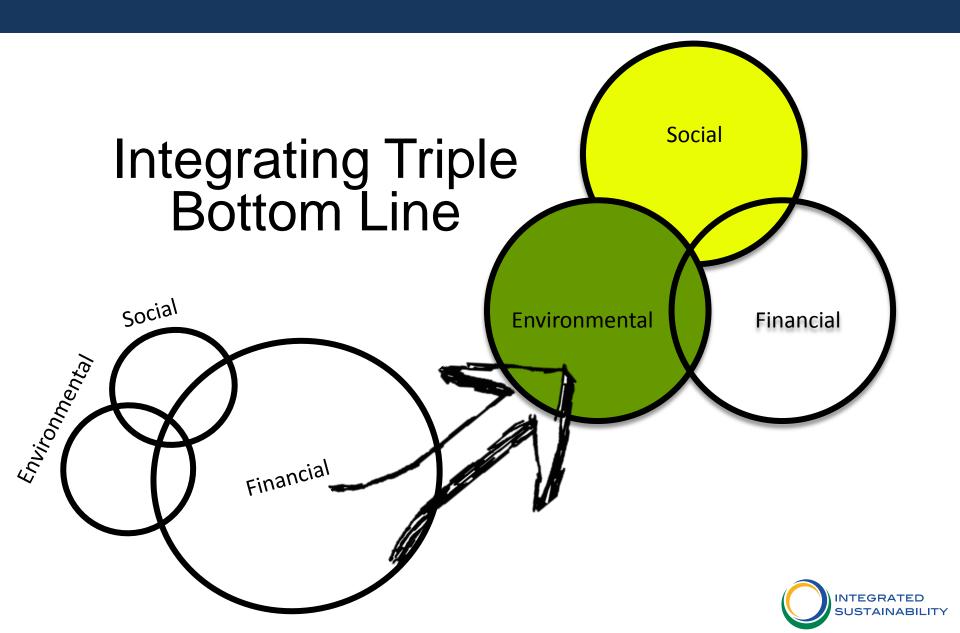
Environmentally Sustainable and Cost Effective Decentralized Wastewater Treatment

Swan Lake First Nation, Manitoba



Water, Waste and Energy Management

April 13, 2012

Presented by: AJ MacDonald M.A.Sc., B.Sc., B.A. *Watertech 2012*

Shifting Decision Making

Sustainability in Design

Helping to develop customers' sustainability policies and objectives into Project Reality.

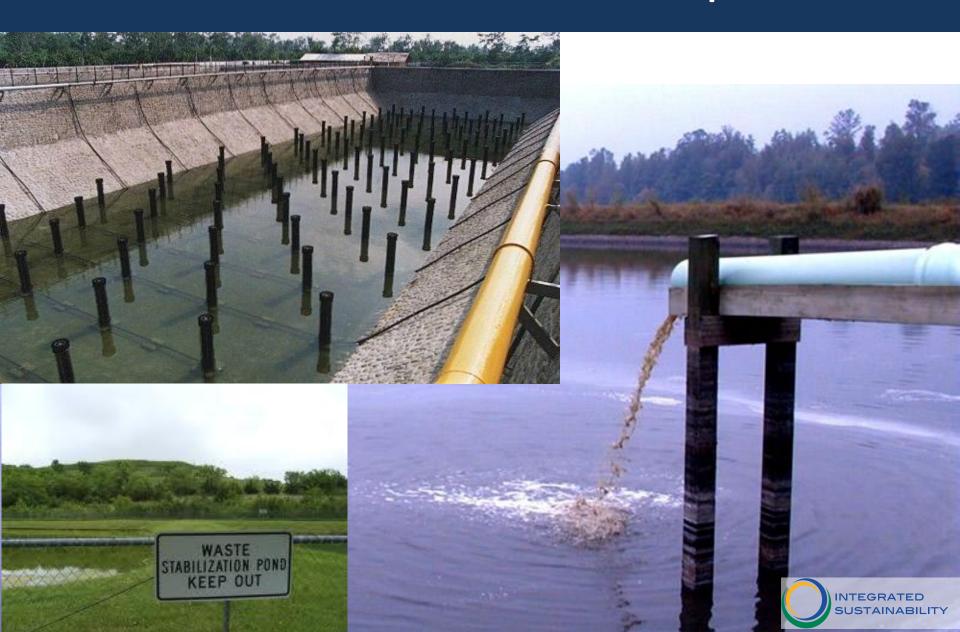
Aim to embed environmental, social and financial sustainability across the project life-cycle.

Background

- The Swan Lake First Nation (Swan Lake) is planning a Commercial Development
 - hotel, gas bar, conference centre, restaurant, offices, RV Park, and Water Park.
 - Water and wastewater treatment system (760 m3/d)

Goals

- Limit environment impact and meet CCME guidelines
 - Evaluate treatment Options
- Be off-grid by 2017
 - Power Options Review


SLFN Commercial Development Site

SLFN Development Plan

Wastewater Treatment Options

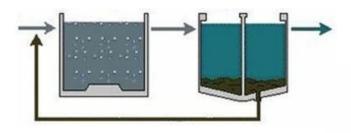
Wastewater Treatment Options

Treatment Options Basis

CCME National Performance Standards for treated wastewater effluent (2009)

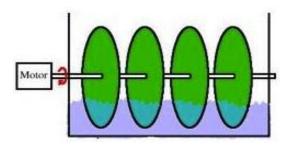
- CBOD₅ 25 mg/L
- TSS 25 mg/L
- Total Residual Chlorine 0.02 mg/L

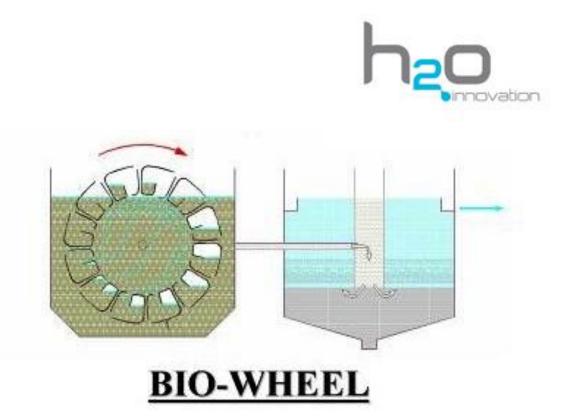
Major trends:

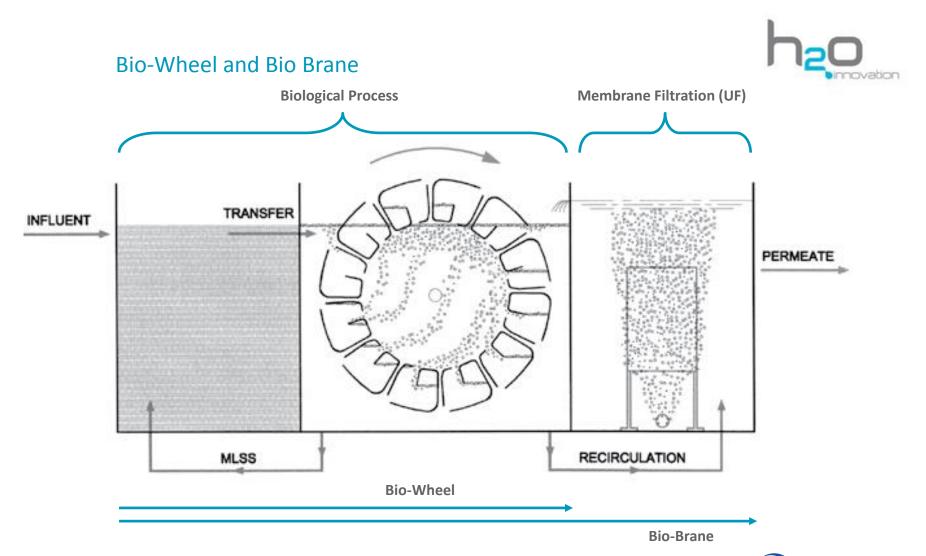

- treatment solutions for:
 - better water quality
 - smaller footprints
 - source water protection disinfectants, nutrients

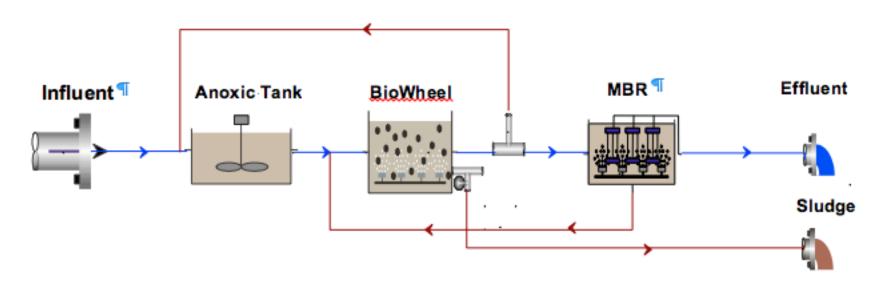
Recommendations for stakeholders:

- understand the regulatory changes
- commit to advanced wastewater infrastructure
- steer towards early compliance


Wastewater Treatment System


ACTIVATED SLUDGE

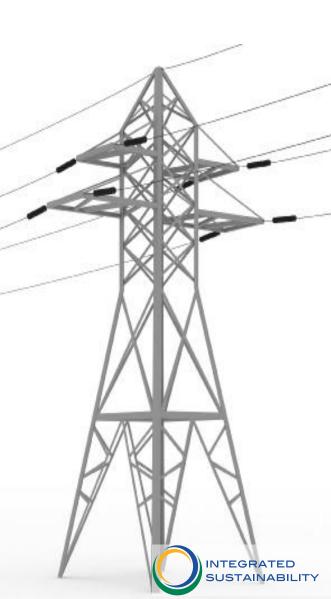

FIXED FILM



How it works

Treatment Model

Process	Influent	Anoxic Tank	BioWheel	MBR	Effluent	Treatment Target
Total cBOD₅	250.3	832.5	1048.1	0.8	0.8	5.0
TSS	248.9	3819.3	4983.7	0.1	0.1	5.0
Total P	5.0	62.9	82.2	1.8	1.8	2.0
TKN	40.0	203.6	258.4	2.1	2.1	10.0
Ammonia	26.4	7.0	0.6	0.1	0.1	5.0
pH	7.3	7.4	7.5	7.6	7.6	6.0 -9.0


An evaluation was conducted to establish the best treatment option.
Conventional Wastewater stabilization ponds VS a wastewater treatment plant

The wastewater treatment technology was selected based on shifting regulations, efficiency and reliability

Power Issues

- The only source of power for heating is Electrical Power at the commercial development.
- HVAC design for 6 air changes per hour (ACPH),
 - System can increase to 12 ACPH for gas detection, and/or when occupied


Design Basis

- Heating required to accommodate 12 ACPH at a temperature of -40° C
- Limit impact on the biological treatment.

- Biological processes are inactive below 10° C
- Ambient temperature is essential for maintaining nitrification / denitrification

Power Options Evaluation

Heating is the most significant power demand for this facility.

Options to reduce the power demand necessary for providing adequate building heat

Renewable/ Alternative Technologies:

Geothermal, Solar PV, Wind, Heat Recovery,
Mix or Resources

Power Options Basis

- Ambient min. -40° C;
 building min. 10° C;
- Electrical requirement 350 kVA, (100% hydro);
- WWTP HVAC load
 1,200,000 kWh/year
 (3,200 hours);
- Net metering revenue \$0.06/kWh;
- Propane \$0.90/L

Power Option Results

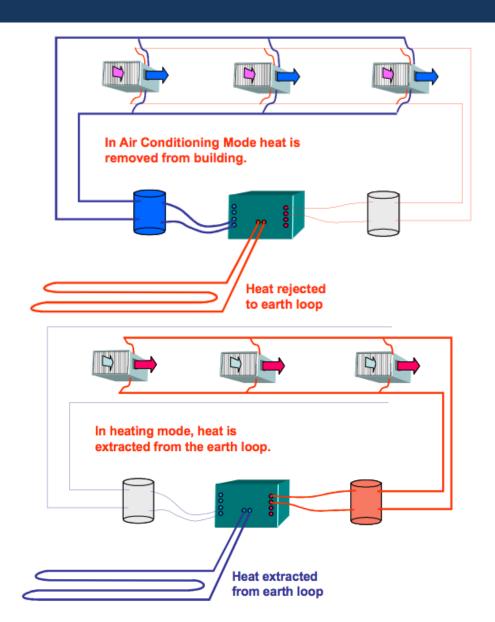
- 50% of winter power consumption is for HVAC.
- Power consumption savings bigger driver than Manitoba Hydro installation cost

- Major opportunity optimize the HVAC system.
- Base case
 estimated yearly
 heating cost is
 \$54,096 to \$73,560
 which
- minimum of 11 heaters (35 kW)

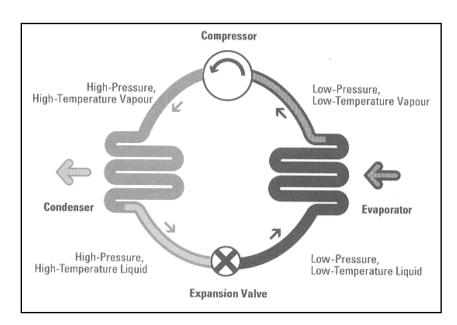
Design Option Analysis

CASE	Capital©Cost© HRV/Geo© Capital©Costs)©	Wind/☑ Solar☑ Capital☑ Costs☑	Total2 Capital2 Costs2	Operating [®] Cost [®] Wind/Solar [®]	Facility®Power® Requirements®	Size	Capacity᠌ Factor᠌
HRV₪	\$250,0002	?	\$250,0002	?	2.14 13 GWhap.a.🛭	?	?
Geothermal🛭	\$340,0002	?	\$340,0002	?	2.04 3 6Whap.a.2	?	?
Wind₪	\$110,0002	\$1,800,0002	\$1,910,0002	\$16/MWh2	2.90GWhp.a.	Wind? =?1.0? MW?	32%INCFI
Solar	\$110,0002	\$6,160,0002	\$6,270,0002	\$4/MWh®	2.9록GWh∰p.a.₪	Solar2 =22.22 MW2	15% IN CF?
Geothermal [®] + ® HRV®	\$500,0002	?	\$500,0002	?	1.89©GWh@p.a.@	. ?	?
Geothermal [®] + ® Wind®	\$340,0002	\$1,350,0002	\$1,690,0002	\$16/MWh®	2.04ख़Whक़p.a.ॻ	Wind? =? 0.75? MW?	32% IN CFI
HRV⊉∄Wind᠒	\$240,0002	\$1,350,0002	\$1,590,0002	\$16/MWh®	2.14®GWh®p.a.®	Wind? =? 0.75? MW?	32%@NCF2
Geothermal② +团RV관② Wind②	\$500,000@	\$1,350,0002	\$1,850,0002	\$16/MWh2	1.89ख़Whक़p.a.ॻ	Wind? =? 0.75? MW?	32%@NCF2

Note: NCF = Net Capacity Factor net of losses


IRR on Capital Investment

Power Price (\$/MWh)


Technology Case	\$30.00	\$60.00	\$110.00
HRV	18%	36%	64%
Geothermal	12%	25%	44%
Wind	-4%	6%	16%
Solar	-8%	-2%	3%
Geothermal + HRV	8%	17%	31%
Geothermal + Wind	0%	9%	21%
HRV + Wind	0%	10%	21%
Geothermal + HRV + Wind	0%	9%	19%

WWTP Geothermal System

- 100 ton System (350 kW)
- Savings of 245 kW/h
- CAPEX \$300,000
- Yearly OPEX \$5,000
- Yearly Savings \$90,000

At power prices above \$60/MWh, wind was also attractive, however not as attractive as HRV and/or geothermal.

- Solar was the least attractive option at all power prices evaluated, (+ at prices > \$100/MWh)
- The combination of Geothermal and HRV had a lower rate of return than either alone, due to the reduced efficiency of the HRV when combined; and
- Capital requirements for wind power were significant and therefore any combined case with Geothermal and/or HRV had a significantly lower return rate.

- A regional combined heat and power (CHP) system that includes both Geothermal, waste management and energy recovery components is being developed for use at this site.
 - Heating, cooling and power for buildings;
 - Energy efficiency increases (70% waste heat to 20% waste heat)
 - Waste management solution and energy recovery
- ISC recently engaged to provide Water Treatment System
 - Groundwater to Greensand Pre-Filtration, Reverse Osmosis, Calcite Polishing

