

Groundwater Monitoring Optimization for a Long Term, Large-Scale Program in Swan Hills, Alberta

Trevor Butterfield, M.Sc., Senior Groundwater Scientist, WorleyParsons Brent Moore, M.Sc., P.Geol., Water and Environmental Advisor, Devon Canada

Presentation Outline

- Introduction to field
- Environmental risk strategy
- Monitoring program
- Results to date
- Cost optimization
- ▶ HC in the soil phase vs. the dissolved phase
- Summary and moving forward

Field Location

Swan Hills Field

- Approximately 420 km²
- Devon operates on behalf of more than 20 production companies
- 400+ operating or suspended sites
- Initial development in 1950s, peak production in mid-1970s

Flare Pits and Drill Sumps

Flare Pits – Contaminant Migration

Sumps – Limited Migration devon

Surficial Geology

- Morainal till deposits
 - Pink thin till (<1m)
 - Green thicker till (≥3m)
- Brown Sands and gravels
- Orange Alluvial sands and gravels along the Swan River
- Grey Peaty/mossy deposits

Regulatory Framework – Swan Hills Field

- Compliance with AEW Tier 1 most straightforward way to achieve closure
- Developing site-specific criteria to provide reachable alternatives, if necessary

Environmental Risk Strategy – Swan Hills Field

- The assessment and remediation program consists of three main activities:
 - environmental site assessments (ESAs);
 - source material management; and
 - post-remediation monitoring, if required

Groundwater assessment and monitoring

WorleyParsons resources & energy

Risk-Based Closure

Key components of closure strategy:

- 1. Source removal to the extent practical
- Long term (but not perpetual) monitoring
- Achievable risk-based remedial objectives appropriate to the remote boreal forest setting of the Swan Hills field

Groundwater Monitoring Program - Overview

109 sites instrumented (87 monitored in past 5 yrs)

Contaminants of concern: weathered petroleum hydrocarbons

Focus on natural attenuation (NA) and status of dissolved plumes (shrinking, stable or increasing)

Worley Parsons resources & energy

Natural Attenuation

From Norris et al. 1994

- 3 monitoring events for gw characterization
 - Routine, HCs, metals and PAHs
- Discontinue seasonal monitoring no seasonal variability observed for dissolved phase at 109 sites
- Ongoing sampling where risk to off-site receptors

Number of Piezometers Per Site

► Range – 3 to 43

► Median – 5

Number of Monitoring Events Per Site

► Range – 1 to 18

► Median – 6

Results – Number of Plumes Identified

HC Phase	No. of Multi- Point Plumes	No. of Single Point Plumes	Total No. of Plumes
Free	8	9	17
Dissolved	19	25	44

- Encompasses BTEX compounds and HC F1 and F2
- Free phase excluded detections of trace free product or hydrocarbon sheen (1 cm minimum thickness)
- Dissolved phase plumes = concentrations of at least one component exceeded the AEW Tier 1 groundwater remediation guideline

Results – Plume Trends

Plume Trend	Free Phase	Dissolved Phase	
Increasing	0 (0%)	1 (2%)	
Decreasing	3 (18%)	6 (14%)	
Stable	14 (82%)	37 (84%)	

- Free phase trends based on thickness
- Dissolved phase based on concentrations

CORONA Research Project

COnsortium for Research On Natural Attenuation

 Reviewed monitoring data from 124 Alberta upstream oil and gas facilities for evidence of NA

Included sites in Swan Hills Field

Plume Trends – CORONA vs. Swan Hills

CORONA - 102 HC plumes; Swan Hills – 44 HC plumes

Dissolved Plume Trend	CORONA	Swan Hills
Increasing	6%	2%
Decreasing	26%	14%
Stable	47%	84%
Variable	21%	0%

No correlation between plume classification and geologic setting, geographic location, permeability and flow velocity

Groundwater Monitoring - Costs

resources & energy

Year	# of Sites	Lab Costs (\$)	Total Costs (\$)
2007	55	116,000	355,000
2008	54	68,000	343,000
2009	17	18,000	101,000
2010	56	82,000	394,000
2011	32	49,000	224,000
2012	2	2,000	12,000

Cost optimization:

- Fall 2007 implemented no-purge sampling
- Spring 2008 critical review of frequency and analytical
- 2011 less frequent sampling for low impact sites
- 2012 reduced monitoring

Heavily Instrumented – Traditional Approach

resources & energy

How Many Piezometers Required for Delineation?

Soil HC vs. Dissolved HC Concentrations

- What dissolved HC concentrations result from soil HC impacts?
- Is there a "threshold" concentration where the need for groundwater investigation could be reduced or perhaps eliminated?

Soil HC vs. Dissolved HC Concentrations

resources & energy

- 88 sites 16% free phase, 40% dissolved plumes
- 98% of HC plumes in field are stable or decreasing (agrees with literature)
- Monitoring frequency reduced due to steady-state conditions
- Supplemental delineation has had limited benefit
- No dissolved phase concentrations exceeding guidelines at soil concentrations <2,000 mg/kg (88 sites)

- Critically review the need for a) ongoing monitoring and b) complete plume delineation
- Determine what the protocol/requirements are for monitoring to support site closure
- Develop a standardized, results-based protocol for ongoing/future monitoring

