Groundwater Monitoring Optimization for a Long Term, Large-Scale Program in Swan Hills, Alberta

Trevor Butterfield, M.Sc., Senior Groundwater Scientist, WorleyParsons
Brent Moore, M.Sc., P.Geol., Water and Environmental Advisor, Devon Canada
Introduction to field
Environmental risk strategy
Monitoring program
Results to date
Cost optimization
HC in the soil phase vs. the dissolved phase
Summary and moving forward
Swan Hills Field

- Approximately 420 km²
- Devon operates on behalf of more than 20 production companies
- 400+ operating or suspended sites
- Initial development in 1950s, peak production in mid-1970s
Flare Pits and Drill Sumps

Flare Pits – Contaminant Migration

Sumps – Limited Migration
Surficial Geology

- Morainal till deposits
 - Pink – thin till (<1m)
 - Green – thicker till (≥3m)
- Brown – Sands and gravels
- Orange - Alluvial sands and gravels along the Swan River
- Grey – Peaty/mossy deposits
Compliance with AEW Tier 1 - most straightforward way to achieve closure

Developing site-specific criteria to provide reachable alternatives, if necessary
The assessment and remediation program consists of three main activities:

- environmental site assessments (ESAs);
- source material management; and
- post-remediation monitoring, if required.

Groundwater assessment and monitoring
Key components of closure strategy:

1. Source removal to the extent practical
2. Long term (but not perpetual) monitoring
3. Achievable risk-based remedial objectives appropriate to the remote boreal forest setting of the Swan Hills field
109 sites instrumented (87 monitored in past 5 yrs)

Contaminants of concern: weathered petroleum hydrocarbons

Focus on natural attenuation (NA) and status of dissolved plumes (shrinking, stable or increasing)
From Norris et al. 1994
Sampling Frequency

- 3 monitoring events for gw characterization
 - Routine, HCs, metals and PAHs

- Discontinue seasonal monitoring - no seasonal variability observed for dissolved phase at 109 sites

- Ongoing sampling where risk to off-site receptors
Number of Piezometers Per Site

- Range – 3 to 43
- Median – 5
- **Range** – 1 to 18
- **Median** – 6
Results – Number of Plumes Identified

<table>
<thead>
<tr>
<th>HC Phase</th>
<th>No. of Multi-Point Plumes</th>
<th>No. of Single Point Plumes</th>
<th>Total No. of Plumes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Free</td>
<td>8</td>
<td>9</td>
<td>17</td>
</tr>
<tr>
<td>Dissolved</td>
<td>19</td>
<td>25</td>
<td>44</td>
</tr>
</tbody>
</table>

- Encompasses BTEX compounds and HC F1 and F2
- Free phase excluded detections of trace free product or hydrocarbon sheen (1 cm minimum thickness)
- Dissolved phase plumes = concentrations of at least one component exceeded the AEW Tier 1 groundwater remediation guideline
Results – Plume Trends

<table>
<thead>
<tr>
<th>Plume Trend</th>
<th>Free Phase</th>
<th>Dissolved Phase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>0 (0%)</td>
<td>1 (2%)</td>
</tr>
<tr>
<td>Decreasing</td>
<td>3 (18%)</td>
<td>6 (14%)</td>
</tr>
<tr>
<td>Stable</td>
<td>14 (82%)</td>
<td>37 (84%)</td>
</tr>
</tbody>
</table>

- Free phase trends based on thickness
- Dissolved phase based on concentrations
CORONA Research Project

- COnsortium for Research On Natural Attenuation

- Reviewed monitoring data from 124 Alberta upstream oil and gas facilities for evidence of NA

- Included sites in Swan Hills Field
CORONA - 102 HC plumes; Swan Hills – 44 HC plumes

<table>
<thead>
<tr>
<th>Dissolved Plume Trend</th>
<th>CORONA</th>
<th>Swan Hills</th>
</tr>
</thead>
<tbody>
<tr>
<td>Increasing</td>
<td>6%</td>
<td>2%</td>
</tr>
<tr>
<td>Decreasing</td>
<td>26%</td>
<td>14%</td>
</tr>
<tr>
<td>Stable</td>
<td>47%</td>
<td>84%</td>
</tr>
<tr>
<td>Variable</td>
<td>21%</td>
<td>0%</td>
</tr>
</tbody>
</table>

No correlation between plume classification and geologic setting, geographic location, permeability and flow velocity
Groundwater Monitoring - Costs

<table>
<thead>
<tr>
<th>Year</th>
<th># of Sites</th>
<th>Lab Costs ($)</th>
<th>Total Costs ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2007</td>
<td>55</td>
<td>116,000</td>
<td>355,000</td>
</tr>
<tr>
<td>2008</td>
<td>54</td>
<td>68,000</td>
<td>343,000</td>
</tr>
<tr>
<td>2009</td>
<td>17</td>
<td>18,000</td>
<td>101,000</td>
</tr>
<tr>
<td>2010</td>
<td>56</td>
<td>82,000</td>
<td>394,000</td>
</tr>
<tr>
<td>2011</td>
<td>32</td>
<td>49,000</td>
<td>224,000</td>
</tr>
<tr>
<td>2012</td>
<td>2</td>
<td>2,000</td>
<td>12,000</td>
</tr>
</tbody>
</table>

Cost optimization:
- Fall 2007 – implemented no-purge sampling
- Spring 2008 – critical review of frequency and analytical
- 2011 – less frequent sampling for low impact sites
- 2012 – reduced monitoring
Heavily Instrumented – Traditional Approach
How Many Piezometers Required for Delineation?
Soil HC vs. Dissolved HC Concentrations

- What dissolved HC concentrations result from soil HC impacts?

- Is there a “threshold” concentration where the need for groundwater investigation could be reduced or perhaps eliminated?
Soil HC vs. Dissolved HC Concentrations

BTEX+F1+F2 - Soil Concentration vs. Groundwater Concentration - Fine- and Coarse-Grained Soils

- Coarse-Grained
- Fine-Grained
- GW Rem - BTEX + F1 + F2 Guideline
- Soil Nat Subsoil - BTEX + F1 + F2
88 sites - 16% free phase, 40% dissolved plumes

98% of HC plumes in field are stable or decreasing (agrees with literature)

Monitoring frequency reduced due to steady-state conditions

Supplemental delineation has had limited benefit

No dissolved phase concentrations exceeding guidelines at soil concentrations <2,000 mg/kg (88 sites)
Moving Forward

- Critically review the need for **a)** ongoing monitoring and **b)** complete plume delineation

- Determine what the protocol/requirements are for monitoring to support site closure

- Develop a standardized, results-based protocol for ongoing/future monitoring