The Future of Laboratory and Field Filtration

Low Level Dissolved Metals Improvements

WaterTech
April 12, 2012

Patrick Novak
Vice President
CARO Analytical Services
1. Challenge
 • Why do we need such low metals data?

2. Solutions
 • Instrumentation & Processes
 • Filtration

3. Evaluation of Filtration Devices
 • Approach
 • Findings/Data
 • Recommendation
30 Second Biography

- Environmental Laboratory
 - Chemistry, Microbiology, Aquatic Toxicity

- Locations
 - Richmond, Kelowna & Edmonton

- People
 - 50+ Staff
 - 10+ Professional Chemists
 - Industry Involvement: CALA, BCELTAC, ACPBC & EMA
Laboratory Perception

We are not CSI!
Why do we need such low metals data?

1. New Regulations/Environmental Protection

2. Clients Requests

3. Market Competition

“Order of Magnitude” DL improvements needed
The Solution - Instrumentation

Agilent’s 7700 Series ICP-MS

- Octopole Reaction System
- Interference Removal
- High Matrix Introduction
- Significantly Lower DLs
The Solution – Processes

Other Issues Amplified at Low Levels

Systematic Validation:

1. **ICPMS** – Introduction Systems, Gases, Programming
2. **Water Source** – Ultrapure Water System
3. **Containers** – Various Suppliers
4. **Environmental Controls** – Storage, Workspace, Procedures
5. **Training**

Filtration continued to be the predominant challenge:

1. Dissolved > Total
2. Poor Low Level Duplicate Data
3. False Positives
Filtration Techniques
- Syringe
- Gravity
- Vacuum

Contamination:
- Containers & Filters
- Sampling & Transfer
- Environment Conditions
- Training

Other Issues:
- Timing: Field vs. Lab
- Precipitation
- Extra Steps in Process
Evaluation of Commercially Available Filtration Apparatuses:

1. Traditional: membrane filtration apparatus
2. Syringe: VWR Supplied
3. Inline: SCP, Environmental Express, Waterra

Screening Considerations:

1. Contamination
2. Speed & Capacity
3. Convenience
4. Cost
Pre-Screening

Partnership With Environmental Express:

- Flipmate™ Product
- Product Required Optimization

Further Product Development & Testing

- Several Prototypes Developed
- Tandem Testing – CARO & EE
- Replicates = 10
Filtration - Assessment

<table>
<thead>
<tr>
<th>Filter Type</th>
<th>Notes</th>
<th>B</th>
<th>Na</th>
<th>Mg</th>
<th>K</th>
<th>Ca</th>
<th>Ni</th>
<th>Cu</th>
<th>Zn</th>
<th>Pb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Detection Limit</td>
<td></td>
<td>1</td>
<td>10</td>
<td>5</td>
<td>10</td>
<td>10</td>
<td>0.02</td>
<td>0.1</td>
<td>1</td>
<td>0.02</td>
</tr>
<tr>
<td>Lowest Regulatory Limit</td>
<td></td>
<td>10</td>
<td>100</td>
<td>100</td>
<td>50</td>
<td>0.5</td>
<td>0.2</td>
<td>1</td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Filter A</td>
<td>Very Slow, High Cost</td>
<td>ND</td>
<td>49</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Filter B</td>
<td>Extensive Contamination</td>
<td>5</td>
<td>123</td>
<td>7</td>
<td>57</td>
<td>212</td>
<td>4.59</td>
<td>3.8</td>
<td>20</td>
<td>0.12</td>
</tr>
<tr>
<td>Filter C</td>
<td>High Cost, Contamination</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>22</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>0.18</td>
</tr>
<tr>
<td>Flipmate Prototype A</td>
<td>Flipmate Original</td>
<td>ND</td>
<td>23</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>2</td>
<td>0.09</td>
</tr>
<tr>
<td>Flipmate Prototype B</td>
<td>Prototype</td>
<td>23</td>
<td>688</td>
<td>12</td>
<td>43</td>
<td>146</td>
<td>ND</td>
<td>ND</td>
<td>29</td>
<td>ND</td>
</tr>
<tr>
<td>New Flipmate</td>
<td>Final Prototype</td>
<td>ND</td>
<td>13</td>
<td>ND</td>
<td>ND</td>
<td>15</td>
<td>ND</td>
<td>0.2</td>
<td>ND</td>
<td>ND</td>
</tr>
</tbody>
</table>

All numbers in ug/L
Metals Commonly Affected by Filtration:

B, Na, Mg, Al, K, Ca, Mn, Fe, Ni, Cu, Zn, Sr, Zr, Mo, Cd, Sb, Ba, Pb

General Study Observations:

• Lead:
 – DL = 0.02 ug/L; Regulatory Limit: 0.1 ug/L
 – Observations @ 0.12, 0.44, 0.18 ug/L

• Calcium
 – DL = 10 ug/L; Regulatory Limit: 50 ug/L
 – Observations @ 212, 22, 152 ug/L

• Manganese
 – DL = 0.05 ug/L; Regulatory Limit: 0.2 ug/L
 – Observations @ 0.15, 0.09, 0.08 ug/L
Filtration - Assessment

Final Filter Assessment:

<table>
<thead>
<tr>
<th>Filter</th>
<th>Contamination (1-10)</th>
<th>Speed/Capacity (1-3)</th>
<th>Convenience (1-3)</th>
<th>Cost (1-3)</th>
<th>Total (Max = 19)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>9</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>14</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>C</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>D - Flipmate</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>D - Flipmate 2</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>D - Flipmate 3</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>17</td>
</tr>
</tbody>
</table>
Filtration – Recommendation

Environmental Express Flipmate

- **Simplifies Filtration Process**
 - Integrate, Closed, Single Use System
 - Simple to use in field and lab
 - Small Sample Volumes Possible
 - Vacuum and Gravity Options

- **Relatively Inexpensive**
 - Low Unit Cost
 - Low Cost of Use
 - Compact – Storage, Shipping

- **Quality Improvements**
 - Lower Cross Contamination Risk
 - Low “Internal” Contamination

Improved LL Metals Data
1. Challenge – Need For Low Metals
 • Regulatory, Client, Industry Pressures

2. Solutions
 – Instrumentation and Process Improvements
 – Filtration Continues to Pose a Challenge

3. Evaluation of Filtration Apparatuses

4. Recommendation

5. Happy Clients
Thank You

Stephen Varisco, PChem CARO Technical Manager

Ian Munro, CARO Metals Coordinator

CARO Analytical Services
Richmond, Kelowna, Edmonton
Patrick Novak, B.Sc., PChem.,
Vice President (pnovak@caro.ca)
www.caro.ca