

Bridging Dichotomous Approaches to Manage Oil Sands Waste and Reclaim Landscapes

Dr. Preston McEachern
Director, Research and Development
Tervita Corporation

Tervita Manages Waste

Tervita Facilities

Water - Energy

- Water is the universal solvent
- Essential to life, industry, economy. USEPA main focus
- Water management is one of the most important yet poorly addressed problems
- Technical ability to manage water is available
- Public perceptions is not consistent with available solutions and with energy reliance

Water Perspectives

Global Water Market

- Large global industry
- Protection of water resources and sustainable use is a major public concern
- Water is critical to the continued development of unconventional resources
- Unconventional resources are key to North American energy security
- to grow 32% by 2025 (Clark & Veil 2009)

North America Produced water expected Chemicals Control 29.2% 28.0% \$24B Process Water Transportation Equipment 9.1% 9.0% Wastewater Equipment Services 9.6% 15.1%

A Different Perspective on Water

- A majority of electricity is generated by thermal processes that require water.
- The US average is about 2.1 m³ per Gj, in Canada the estimate is 20x higher.
 - A 60 W bulb consumes 11 to 24 m³ per year
 - Electricity use consumes 100 m³ per person/yr
 - Energy use consumes 630 m³ per person/yr
- Water use consumes energy
 - California uses 8% of its total electricity to convey water¹; 19% on its use cycle²

Water Supply & Use

- Oil and gas sector:
 - A small user of water relative to other segments
 - A large recipient of attention and regulatory scrutiny
- Industry's water management and overall environmental performance impacts pubic perception & in turn regulatory agenda
- Regulations continue to tighten on industry & limit access
- Industry has an opportunity to show leadership through action

Percentage of Water Used by Market Segment in the U.S.

Cubic meters used in Alberta

Water Consumption & Energy

Figure III-4
Life-cycle Water Use of Various Energy Sources

Source: Cambridge Energy Research Associates, US Department of Energy. 90107-28

Water or Solids?

How do we turn this?

A Space Issue

Solids Out of Water

Solids Out of Water - No Slam Dunk

Figure 6.8 Relative volumes of mineral solid and water in MFT

Source: Devenny 2009

Solids Out of Water - No Slam Dunk

\$50/dry tonne?

\$30/dry tonne?

\$60/dry tonne?

Is The Recycle Concept Hurting Water Management?

Water Efficiency Regulations

US

- Executive Order 13423 requires 2% reduction in use intensity per year to 2016
- Energy Independence & Security Act requires water efficiency BMPs be implemented
- Executive Order 13514 extends 13423 to broader water use (e.g landscaping) and reduction out to 2020
- Application of Environmental Flow Maintenance in water licensing applications

Canada

- National Action Plan to Encourage Municipal Water Use Efficiency
- Application of Environmental Flow Maintenance in water licensing applications (DFO process to evaluate HADD)

Alberta

 Water Act = Procedures for allocating water includes IFN (licenses), Basin restrictions (regulations) determined from a number of factors

Alberta: What is "Best use"

- Strong focus on recycling:
- Could this be alternative use, or
- Returning water to the hydrologic cycle?
- Alternative Use:
 - One users waste may be another users (relatively) clean water
 - OSLI is leading an initiative to examine the potential for maximizing water reuse
- Discharge in safe manner:
 - Discharge criteria for slow and managed release of non-toxic water

Mine Tailings Example

Cumulative water release from tailings (Bm3/yr)

Tailings Water Chemistry

e.g. MFT pore water and MFT pond water

Water Will Return from Tailings

- Tailings need to be reclaimed
- 70% of volume will be released as water
- Industry needs to be committed to water treatment
- Waiting to deal with water issue has several consequences:
 - By 2025 the volume of water will have grown to 900 million m³
 - If the Tailings Framework accomplishes its objectives there may be as much as 2.5 billion m³ of water that needs an alternate use or a return to the environment
 - As water is recycled the concentration of solutes that are difficult to treat increases

The Water Treatment Problem

- 2.5 B m³ water contains 0.1 to 1 B Kg each of Na, SO₄, and Cl
- To remain below the draft Athabasca Water Management Framework this water would require over 100 years of dilution, or
- The dilution scenario would require 200 to 500 km² of pit lakes and still require >40 years of retention time
- Cheap methods of treatment and / or disposal are required:
 - Planning reclamation features for dilution and retention in aquifers with similar chemistry
 - Treatment and disposal

Understanding Other Potential Uses

Supply Demand Curve

Source: OSLI

HYWARE System

Haynesville Water

Flowback Water	Raw Water In	Product Water	3
Total Hardness (ppm)	10,200	40	18
Calcium (ppm)	3,780	16	
Barium (ppm)	1,050	1	
Strontium (ppm)	72	1	E
Magnesium (ppm)	178	ND	- 5
Iron (ppm)	93	0.3	

Solids Management

- Oil Sands Mine Fine
 Tailings Solids are > 44
 µm
- About 340 Kt of fines/ day, enough to fill a city block (150 m square) 3 m deep every day
- Can be used in reclamation features

Fluid Fine Tailings Inventory and Bitumen Production

True Cost of Not Managing the Back End

- Tervita remediating Sherridon Mine
- Whole lake water treatment
- Stable hydrology
- Passive wetland treatment
- Appropriate boreal features

Intractable Problems = Expensive Solutions

Putting Waste Solids to Good Use But There is More to Consider...

What Chemical Loads Are Expected?

- Sustainable? Hydrology
- Wetland treatment?

Set success criteria:

- Stream concentration
- Watershed load
- Without this there is no evaluation of cost = no planning to offset

Developing Planning Tools From A Waste Perspective

- Planning from production to reclamation
 - Material balance
 - Energy balance
 - Financial balance
- Get away from reacting to the waste we generate, manage the material balance
 - Are there opportunities in production to generate easier to treat waste?

Filling Active Pits?

Leadership In Watershed Reclamation

- Building industry best practices
- Developing knowledge systems to ensure success
 - Front to back
 - Integrated projects
- Developing experience for oilsands using past experience in mine reclamation
- Experience in reclamation using mining AND other sectors (e.g. forestry)

Conclusion

- The world view on aqueous waste needs to expand to its full energy, waste life-cycle
- Regulations that facilitate transfer of water among best uses should be examined
- Waste water and waste solids must be managed together
- Opportunities that generate more benign waste (but may reduce recycling of water) need a broader life-cycle assessment
- Passive treatment options can be promoted if well planned before the waste is generated

Questions or comments?

Dr. Preston McEachern
Director, Research and Development
Tervita Corporation
(403) 718-1266
pmceachern@tervita.com

