Cumulative Conundrums: Surface water & the complexity of CEM

Jason Unger, Staff Counsel

April 14, 2011

Water Tech

Outline

About the Environmental Law Centre

• The cumulative context

The current policy/legal framework

• Where are we going and can we get there?

About the ELC

 Mission: To ensure that laws, policies and legal processes protect the environment

Public Programs

- Information and referral
- Community outreach
- Law reform

The Cumulative Context

Alberta Environment, River Water Quality Sub Index (2008-2009) http://environment.gov.ab.ca/info /library/7683.pdf

Northern Rivers: 2008-2009							
River Location		Sub-Index Values (0-100)					
	Metals	Nutrients	Bacteria	Pesticides	(Average		
Peace R. at Fort Vermillion	88	79	100	100	92		
Peace R. upstream Smoky R. near Shaftesbury Crossing	86	79	100	100	91		
Smoky R. at Watino	91	78	100	100	92		
Wapiti R. at Hwy 40	97	90	100	100	97		
Wapiti R. above confluence of Smoky R.	95	80	50	100	81		
Athabasca R. upstream of Hinton	100	100	100	100	100		
Athabasca R. at Athabasca	97	79	100	100	94		
Athabasca River upstream of Ft. McMurray	97	79	95	100	93		
Athabasca R. at Old Fort	89	70	100	100	90		
North Saskatchewan R. at Devon	100	79	95	100	93		
North Saskatchewan R. at Pakan	100	80	89	90	90		
North Saskatchewan R. upstream Rocky Mountain House	100	80	100	100	95		
Battle River at Hwy 53	90	31	72	93	72		
Battle River at Driedmeat Lake	91	29	100	78	75		

Southern Rivers: 2008-2009								
River Location	s	Sub-Index Values (0-100)						
	Metals	Nutrients	Bacteria	Pesticides	(Average			
Red Deer R. upstream of Red Deer (Hwy 2)	100	80	97	96	93			
Red Deer R. at Nevis Bridge	100	79	89	91	90			
Red Deer R. at Morrin Bridge	100	79	89	80	87			
Red Deer R. at Jenner	92	62	49	84	72			
Bow R. at Cochrane	100	90	100	100	98			
Elbow R. at 9th Ave. Bridge	97	75	55	97	81			
Bow R. at Carseland Welr	97	78	92	93	90			
Bow R. at Cluny	97	79	100	93	92			
Bow R. at Ronalane	100	78	84	75	84			
S. Saskatchewan R. upstream of Medicine Hat	97	79	97	90	91			
Oldman R. near Brocket	100	100	100	100	100			
Oldman R. upstream of Lethbridge (Hwy 3)	97	90	92	89	92			
Oldman R. downstream of Lethbridge (Hwy 36)	97	90	96	96	95			
Milk River at Hwy 880	100	79	95	96	93			
	Index Ratin	gs						
	Excellent	Good	Fair	Marginal	Poor			
	96-100	81-95	66-80	46-65	0-45			

Trophic State of Alberta Lakes http://environment.gov.ab.ca/info/l ibrary/8089.pdf

TROPHIC STATE OF ALBERTA LAKES

Based on Average Summer (May-September) Total Chlorophyll-a Concentrations

Three most recent years of data was used to calculate trophic status Created July 2009

Cumulative context

- Cumulative inputs of cholestorol, phytosterols and fecal sterols
- Study reflects distribution over hundreds of km in SSRB and not limited to major point-sources.
- Endemic longnose dace populations affected.
 - Jeffries et al. Presence of natural and anthropogenic organic contaminants and potential fish health impacts along two river gradients in Alberta, Canada. Environmental Toxicology and Chemistry, 2010; DOI: 10.1002/etc.265

Battle River study

- Cumulative effect of human developments negatively linked to the relative abundance of lithophils and positively linked to the relative abundance of omnivores.
- Agriculture and cattle density impacts on aquatic species abundance and variety
 - Stevens, C.E. et al "Influences of Human Stressors on Fish-Based Metrics for Assessing River Condition in Central Alberta" Water Qual. Res. J. Can. 2010 Volume 45, No 1, 35-46.

Fig. 2. A stressor-metric relationship, specifically a model-averaged regression line predicting %omnivore metric values with road densities in the basin (m/ha) overlaid with a scatter plot for the 80 sites sampled in the Battle River, Alta. (also see Table 4).

Do we even know enough?

• Nature Geoscience "Ecohydrolgic separation of water between trees and streams in a Mediterranean climate" (J. Renée Brooks et al. 2009) and Prof. Jeff Mcdonnell (University of Oregon) (presentation at University of Alberta, 2011)

Uncertainty, climate and supplies

Historical water levels for closed-basin prairie lakes (from van der Kamp and Keir, 2005; van der Kamp et al., 2006) cited in Climate Change Impacts on Canada's Prairie Provinces: A Summary of our State of Knowledge http://www.parc.ca/pdf/research_publications/summary_docs/SD2008-01.pdf

The impact of climate change on the glaciers of the Canadian Rocky Mountain eastern slopes and implications for water resource-related adaptation in the Canadian prairies
"Phase I" - Headwaters of the North Saskatchewan River Basin Climate Change Action Fund - Prairie Adaptation Research Collaborative
PARC Project P55
M.N. Demuth¹ and A. Pietroniro²

Figure C 7 - Preciptation and temperature change between 1961-1990 and 2040-2069 for the North Saskatchewan River Basin.

Legislative context

EIAs, BMPs, Mitigation, Policies, Programs

Positive CEM intentions

- Led by Alberta Environment
- Outcome/results based regulation
- Increased flexibility and efficiency
- Adaptive
- Linked to regional planning process

Framework approach

Positive CEM intentions

- Watershed planning
 - State of the basin
 - Implementation?
- ALSA
 - Mechanism for implementation
 - LARP/SSRP
 - Source water protection

Threats

- Poor objective setting
- Threshold creep
- Grandfathering
- Lobbying and litigation over regulator responses

Gaps and Barriers

Monitoring Capacity

- Data gaps
 - Nutrient particularly Phosphorus
 - Air and Soil loading
 - Lake monitoring
 - Pesticides
 - Hormones/endocrine disruptors
 - Synergistic effects
 - Air borne contaminants –
 e.g. NE

Assessment Capacity

- Cumulative assessment of loading from point and nonpoint source
- Baselines?
- Assessment of flows on assimilative capacity
- WPAC technical and financial capacity

Implementation issues

- Accountability for outcomes
 - Regional outcomes, results based regulation and the nexus of causation
 - Justifying regulatory action
- Crown liability
- Outcome based regulation will often be required i.e. setbacks/buffers

Accountability?

- Regulatory response required
 - Sector based reductions?
 - Pro-rata?
 - Grandfathered?
 - Proven contribution?
 - Anthropogenic vs. natural?

Key messages

- Knowledge and monitoring
- Policies and regulation must be comprehensive and landscape/watershed based
- Administration must be comprehensive, evaluative, and adaptive
 - Enforcement and compliance
 - Mitigation & BMP
- Costs of implementation must be forecast and met
 - e.g. Chesapeake Bay TMDL
 – estimated over \$9.5 billion in urban stormwater costs
 - Chesapeake Bay TMDL and Virginia Watershed Implementation Plan (Hampton Roads Planning Commission) stormwater reductions (\$679M annually) http://www.hrpdc.org/MTGS_%20AGDS/Agendas/2010/Oct2010/H13_Ches_Bay_TMDL.pdf

Recommendations moving forward

Specify
regulatory
changes that will
be required &
clarify
accountability

Create a clear implementation ladder for management and regulatory responses

Clarify budget for monitoring and assessment

Discussion & Questions

Phone: 780-424-5099 or 1-800-661-4238

E-mail: elc@elc.ab.ca or junger@elc.ab.ca

Web: www.elc.ab.ca

Blog: http://environmentallawcentre.wordpress.com

Facebook: http://www.facebook.com/environmentallawcentre

Twitter: https://twitter.com/ELC_Alberta

To sign up for e-mail updates, visit:

http://www.elc.ab.ca/pages/home/Notification.aspx.