



# Examination of a Groundwater Remediation Pilot Test to Remove Organic By-Products from Natural Gas Processing

Bell, M.; Elliott, C.; Kelly, S.; MacDonald, A.J.; Warren, R.





#### Safety Moment – Summer BBQing

- Gas Grill / Charcoal Grill Safety Tips:
- Check grill hoses for cracking, brittleness, holes, and sharp bends.
- Move gas hoses as far as possible from dripping grease or hot surfaces.
- Keep propane gas containers upright.
- Never keep a filled container in a hot car or car trunk.







- Characterization of Sulfolane as groundwater contaminants;
- Water treatment process design, implementation and optimization;
- Pilot system results summary;
- Transition from pilot to full scale requirements and approach; and
- Hydrogeology related to groundwater extraction and re-injection into the formation.









Degrades aerobically NOT anaerobically





### Characterization of Sulfolane as Groundwater Contaminants

- 1985: Sulfolane and DIPA were first detected which initiated a detailed monitoring program
- 1986: tanks, water and drain lines were removed or replaced
- 1991: groundwater monitoring detected offsite Sulfolane
- Between 1985-2007, 42 monitoring wells were installed to characterize the site.





### **Remediation Driver**

















- Originally studies completed on biodegradation of Sulfolane in industrial wastewaters.
- Research studies were completed by University of Alberta in the mid 1990's focusing on soil/groundwater remediation.
- Stoichiometry of Sulfolane oxidation under ideal conditions:

$$C_2H_8O_2S + 6.5O_2 \rightarrow 4CO_2 + 3H_2O + 2H^+ + SO^{-4}$$

Surface Water Quality Guidelines, 2010 provides the primary criteria for Sulfolane remediation (0.09 mg/L).





### Characterization of Sulfolane as Groundwater Contaminants

- 2006-2007: Investigated the treatability of Sulfolaneimpacted groundwater, including:
  - Groundwater recovery
  - Lab scale In-situ remediation
  - Lab scale biodegradability testing
- 2008-Present: Operate pilot system and observe effect on contamination plume





### **WorleyParsons**

### **Water Treatment Process Design**

- An aerobic biological system with activated sludge and clarifier
- Uses activated sludge from a municipal wastewater treatment plant
- Treatment effective to <0.001 mg/L</li>
- Treatment capacity 150m³/day
- Effluent stored, sampled and discharged to formation









### **WorleyParsons**

### **Water Treatment Process Design**







#### Pilot System Results Summary Analytical Results

|          | Benzene | Toluene | Ethylbenzene | Xylenes (t) | PHC F1 (C6-C10) | PHC F2 (C10-C16) | DIPA  | Sulfolane |
|----------|---------|---------|--------------|-------------|-----------------|------------------|-------|-----------|
| RW05-1   | 0.0020  | 0.0008  | 0.0050       | 0.072       | 0.11            | 0                | <0.05 | 3.4       |
| RW06-4   | <0.0004 | <0.0004 | <0.0004      | <0.0008     | <0.1            | 0                | <0.05 | 11.0      |
| RW06-3   | <0.002  | <0.002  | 0.1900       | 2.400       | 220.00          | 0.0              | 0.54  | 12.0      |
| Effluent | <0.0004 | <0.0004 | <0.0004      | <0.0008     | <0.1            | <0.1             | <0.3  | <0.001    |

<sup>\*</sup>Sampling date: 22 Oct 2010

- Treated effluent was below detection limits for all treatment objectives
- ► This demonstrates the ability of the pilot system to treat the recovered water with a single pass through the system



<sup>\*</sup>All concentrations in mg/L



### **Pilot System Results Summary**

|                        | 2008                     | 2009                | 2010                |  |
|------------------------|--------------------------|---------------------|---------------------|--|
| Operation Interval     | September to             | May to              | June to             |  |
|                        | October                  | September           | September           |  |
| Water Recovered        | 315 m <sup>3</sup>       | 2200 m <sup>3</sup> | 1780 m <sup>3</sup> |  |
| Treated Water Injected | 315 m <sup>3</sup>       | 2300 m <sup>3</sup> | 1770 m <sup>3</sup> |  |
| Sulfolane Removed      | 5 kg                     | 31 kg               | 14 kg               |  |
| Treatment Success      | Below detection          | Below detection     | Below detection     |  |
|                        | limits; multiple<br>pass | limits; single pass | limits; single pass |  |
| Highlights             | Established              | Single pass         | New wells drilled,  |  |
|                        | system                   |                     | no significant      |  |
|                        | effectiveness            |                     | process             |  |
|                        |                          |                     | interruptions       |  |



# WorleyParsons resources & energy

#### **Implementation and Optimization**

- Pump screen fouling
  - Water is very hard
  - Scale is effecting flowrates
  - Pulling pumps periodically is necessary
- Sludge recycle
  - Calcite may make sludge "heavy" and difficult to recycle
- Minor mechanical issues
  - Some piping and valves replaced to improve flow control







### **WorleyParsons**

### **Surface Water Monitoring**





# WorleyParsons resources & energy

#### **Transition from Pilot to Full Scale**

### Process Optimization

- Apply computer modelling software (PetWin)
- Define HRT with enhanced testing strategy
- Define SRT by measuring and controlling sludge waste/recycle

### Effluent Handling

Propose direct injection of treated effluent to AENV

### Hydrogeology

- Install data loggers to track groundwater elevation with better resolution
- Continue characterization of the fractured bedrock to define optimum capture strategy.





### **Hydrogeology – Bedrock Characterization**





### **Hydrogeology – Regional Geology**







Bedding plane

Lowest point of , bedding plane

**Depth Interval:** 

21.20 - 22.10 m

0° 270° 90° 180° 0°

Televiewer Image (O deg = magnetic north)

### Hydrogeology

Approx. 60°





### **Hydrogeology – Surficial Geology**





### **Hydrogeology – Bedrock Characterization**











resources & energy

- Discover Sulfolane in creek
- Research treatability of Sulfolane
- Conduct pilot testing of activated sludge system
- Operate and optimize system
- Refine our understanding of the site geology Implement full scale system

**Any Questions?** 

