

Different Approaches in Assessing Background Groundwater Quality

Ken Lyon, M.Sc., P.Geol., and Elizabeth Haack, Ph,D., P.Chem.

22 April 2010

Ken:

- What is "background"?
- Multiple lines of evidence approach

Elizabeth:

- Case studies
 - Aluminum
 - Barium

Both:

Wrap-Up

Fallout from AENV Tier 1 Guidelines

- Alberta Environment (AENV) Tier 1 Guidelines:
- Several low guideline values from consideration of the Domestic Use Aquifer (DUA) and Freshwater Aquatic Life (FAL) receptors
- Groundwater quality "exceedances" often appear to be background, particularly metals

e.g. Al, As, Cd, Cu, Ba, Mn, Se, U, Zn

also nitrite & nitrate

chloride, sodium, chloroform (urban areas)

Site Impact or Background?

Are Tier 1 exceedances impact from anthropogenic point sources or background?

- What is background?
 - Natural background in absence of anthropogenic influence (can be used in place of Tier 1 guidelines)
 - Anthropogenic background from diffuse or non-point anthropogenic sources
 - e.g. urban areas road salting, leaky sewer & water lines, fertilizers

AENV (2009) Guidance & Site Challenges

▶ AENV Guidance

- Natural concentration in a particular groundwater zone in absence of any anthropogenic sources or activities
- Will vary spatially & temporally (moving target)
- Must consider groundwater quality data from several wells

Site Challenges

- Site Challenges
 - How many sites have several "background" wells?
 - Who has baseline pre-development data and enough data for statistical or non-parametric analysis?
 - Who has access to extensive databases in public domain?
 - Who has budget for extensive analysis?
 - What is "natural" in an urban or agricultural environment?

How best to find the answers? Multiple lines of evidence

- Five-point checklist of questions (may not have answers for all):
 - Origin (natural and/or anthropogenic)?
 - Compare with published data?
 - Correlation with other Site data?
 - Concentration distribution?
 - Controls on aqueous concentrations?

Where can parameters potentially originate from?

- Natural occurrences in the environment vs rural, urban, industrial, etc, anthropogenic occurrences
- Some sources of information:
 - CCME Environmental Quality Guidelines
 - Health Canada monographs
 - Groundwater geochemistry and pollution books
 - Other books, publications, reports
 - Experience

How do the data compare with published data or other reports?

- Some sources of information for Alberta sites:
 - Prairie Farm Rehabilitation Administration groundwater assessments
 - Farm well water quality studies
 - Geological Survey of Canada studies of the Paskapoo bedrock aquifer
 - Alberta Geological Survey reports
 - University research and theses
 - In-house consultant reports
 - Etc.

Are there apparent correlations with other site data or information?

- Apparent correlations
 - Locations and depths/ elevations?
 - Lithology and provenance?
 - Soil quality?
 - Sampling methods?
 - Groundwater quality and chemistry?
- Potential use of next-generation database management tools coupled with GIS software

What does the distribution of data look like?

Non-parametric box-and-whisker plots

- ► Five number summary:
 - median,
 - 25th & 75th quartiles
 - 1.5 & 3.0 x Interquartile Range
- ▶ 95% within 1.5xIQR if normally distributed

Mineral Surface

Variable Charge

$$+$$
 >Al₂=OH₂+ <==> >Al₂=OH⁰ + H+ <==> >Al₂=O⁻¹ + H⁺

Mineral Surface

Mineral Surface

Permanent Charge

Cation Exchange Capacity (mmol charge)

$$\approx$$
 2[Ca] + 2[Mg] + [K] + [Na] + 3[Al]

Species X

Speciation

- Cation or anion?
- ▶ pH?
- Redox or non-redox active?
- Expected speciation over site conditions?
- Solubility controls?
- Major or trace metal concentrations?
- Mineral or organic matter adsorption?
- lonic strength of solution?
- Colloidal behaviour?

Aluminum Case Study (In-house Data for Calgary Area)

- Tier 1 guideline 0.1 mg/L (Receptor: FAL)
- Shallow Groundwater, Calgary, 300 analyses, several sites
- Occasional exceedances, ranging up to 1.7 mg/L

Multiple Lines of Evidence Checklist

- Potential Origins:
 - Natural sources: most abundant metal in earth's crust
 - General anthropogenic sources: vehicle parts, aircraft frames, pharmaceuticals, flocculants in water treatment (Health Canada 1998)
 - Potential site sources: Calgary drinking water 0.028 to 0.445 mg/L from water plant treatment (City of Calgary, 2009)

Aluminum Case Study continued

Published Data:

- 13 of 816 Alberta farm well samples > 0.2 mg/L (Fitzgerald et al. 2001)

Other Correlations:

- Most wells completed in silt, clay, Paskapoo mudstone indicating weathering of alumino-silicates
- Scattered locations

Data Distribution:

- Upper box plot whisker (0.02 mg/L) about the same as upper limit for dissolved aluminum in near neutral pH range (Appelo & Postma 2007)

Concentration Controls:

- Clay mineral gibbsite (Al(OH)₃) crystals stable at diameter of 0.1 µm (Hem 1985)
- Compare field filtration 0.45 µm

Aluminum Case Study continued

Conclusion: likely represent natural background

Example 29 In-house Data Shallow Groundwater

- Tier 1 Guideline: 1 mg/L (Receptor: Domestic Use Aquifer)
- Rare to occasional exceedances, ranging up to 2-3 mg/L

Multiple Lines of Evidence Checklist

- Potential Origins (Health Canada 1990):
 - Natural sources: trace element igneous and sedimentary rocks, most commonly as barite (BaSO₄)
 - General anthropogenic sources: use in plastics, rubber, electronics, textiles, ceramic glazes and enamels, glass and paper, fuel oil additive, lubricant additives (drilling mud)
 - Potential site sources: fuel oil, drilling mud

Barium Case Study Continued

- Published Data:
 - 2 of 816 Alberta farm well samples > 1 mg/L (Fitzgerald et al. 2001)
- Other Correlations
 - No apparent lithologic correlation
 - Scattered locations
- Data Distribution
 - Upper box plot whisker 0.7 mg/L
- Concentration Controls
 - Solubility
 - Sorption Cation Exchange

Barium Cation Exchange Control Barium vs Solution Ionic Strength

Solution Ionic Strength (mM)

Barium Case Study continued

- Conclusion: likely reflects anthropogenic source
 - Direct from drilling muds or diesel fuel additives; or
 - Indirect from anthropogenic salinity related impacts

Some Wrap-up Thoughts

- Can be detailed but necessary exercise in dealing with Tier 1 Guidelines
- Becomes more efficient as knowledge "base" and database management systems developed
- Potential application to upstream well fields
- Ultimately an exercise in professional judgment
- Future challenges and study
 - Compilation and dissemination of data sets in the public domain

References

- Alberta Environment, 2009. Alberta Tier 1 Soil and Groundwater Remediation Guidelines. February 2009.
- Appelo, C.A.J. and Postma, D., 2007. Geochemistry, Groundwater and Pollution. A.A. Balkema Publishers, New York, NY. 649 p. (Corrected reprint 2007).
- The City of Calgary, 2009. Special Issue 2008 Water Quality Report. Waterways, Vol. 11, Issue 3. Calgary, AB. July 2009.
- Fitzgerald, D., Chanasyk, D.S., Neilson, R.D., Kiely, D. and Audette, R., 2001. Farm Well Water Quality in Alberta. Water Quality Research Journal of Canada, Vol. 36, No. 3, pp.565-588.
- Grasby, S.E., Chen, Z., Hamblin, A.P., Wozniak, P.R.J., Sweet, A., 2008. Regional characterization of the Paskapoo bedrock aquifer system, southern Alberta. Canadian Journal of Earth Sciences. 45, pp.1501-1516.
- Health Canada, 1998. Chemical/Physical Parameters: Aluminum, Edited November 1998. Retrieved from http://www.hc-sc.gc.ca/ewh-semt/pubs/water-eau/. September 17, 2009.
- Hem, J.D., 1986. Study and Interpretation of the Chemical Characteristics of Natural Water. US Geological Survey Water Supply Paper 2254, Third Edition, Second Printing, Alexandria, Virginia.

THANK YOU!

ken.lyon@worleyparsons.com & elizabeth.haack@worleyparsons.com