

Regional Groundwater Monitoring Network Implementation: NAOS Region

Design and Implementation

The journey

	1999	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Water Act												
Water for Life Strategy												
Rosenburg International Forum												
W4L Renewal												
W4L Action Plan												
GW management frameworks												
NAOS Regional Monitoring												

Why is this being done?

- Assess the current state of GW resources within the study area (and address public concerns)
- Define / refine baseline and range of natural variability
- Provide a means to detect and assess changes to GW resources from future development activities or natural events

Guiding principles

- Cumulative effects analysis (& verification of EIA results)
- Pollution prevention / avoidance
- Reversal of trends

Evaluate

Evaluate

Respond

Integrate

Study area

resources & energy

Study Area

Land Use Framework Planning Region: North-East

Alberta River Basins

General Flow Patterns & Rates

Dover Plain Ft. McMurray

Steepbank Pain

20

Interval	Groundwater flow velocity (m/y)
Till	<1
Surficial sands and buried channels	<1 to 140
Clearwater	<1 to 7
Grand Rapids	13
McMurray oilsands	<1 to 2
Basal McMurray	<1 to 35
Waterways	<1
Prairie Evaporite	
Methy	<1 to 3

Modified from Andriashek & Atkinson 2007

Brule Plain

Inputs

Natural:

- Discharge of water from saline bedrock formations (Devonian, Basal McMurray, Wabiskaw)
- Leaching of hydrocarbons & salts from exposed bedrock (e.g., McMurray, Clearwater)
- Discharge of organics & associated trace elements from muskeg waters (e.g., NAs, DOC, trace elements)
- Leaching of rafted oilsands & marine shale in surficial deposits

Anthropogenic:

- Seepage from mine structures (tailings ponds, pit backfill, overburden storage areas, reclamation landforms)
- Operational upsets (very localized)
- Effects from mine dewatering, water disposal, water use (regional effects)
- Heat from in-situ operations (localized)
- Municipal waste water & urban runoff
- Other up-stream releases (e.g. pulp mills; agricultural runoff)

Posted leases & active operations

resources & energy

- Initial review (initiated Summer 2007)
- ► 1,478 monitoring wells reviewed (over 132,000 data records)
- Highly variable, baseline groundwater quality conditions identified
- Proposed locations for further long-term monitoring selected based on risk mapping

Natural variability

resources & energy

Focusing efforts

(vulnerability mapping)

Source area identification

resources & energy

Overall risk

resources & energy

Network development

- Provide good regional coverage to establish baseline quality conditions in key aquifers
- Assess long-term quality trends
- Assess potential cumulative effects of natural and anthropogenic inputs
- Differentiate between natural versus humaninfluences

Existing infrastructure

Groundwater Observation Well Network (GOWN)

- AENV-operated
- 16 wells actively monitored at 5 sites within the AOS region

Alberta Geological Survey Wells (AGS)

- 13 wells at 3 sites within the AOS region
- AGS ownership transferred to AENV for use in AOS network

Operator Wells:

- Approximately 9 operators within the Fort McMurray area have representatives on the AOS network
- Agreements made to have wells and/or associated data used to support network

WorleyParsons

Spatial distribution

Compilation of historical data

- Historical datasets for the GOWN, AGS and Operators monitoring wells
- Well lithology and completion details
- Temporal groundwater surface elevations
- Historical water quality results

Reconnaissance (air & on-the-ground)

- Verification of location and existence of 27 select GOWN and AGS sites throughout the project study area
- Determine potential access routes to each site
- Review of well condition & initial testing

Well prioritization

Selection based on:

- Completion interval
- Spatial distribution of wells in study area
- Accessibility of well location
- Well condition

Current deployment

22 wells sampled for:

- Field parameters (pH, EC, temp.)
- General indicators
- Dissolved hydrocarbons and phenols
- Dissolved metals and trace elements
- Polycyclic aromatic hydrocarbons
- Stable & radiogenic isotopes

Sampling program

Instrumentation

- 40 wells equipped with P transducers + data loggers
- Water levels and temperatures every 12 hrs
- Wells with historical data utilized to extend record

resources & energy

GWN-06-60(BAS)

Historical ID: BAS-26

Location

Northing: 6343949 Easting: 472874 Elevation (Top of PVC): 294.58 mass

LSD: 01-18-95-09 W4M DRS: 840195 AENV Record: 233818

Access: Truck and Argo

Directions: The site can be accessed from parking lot where the Canterra Road intersects with the Muskeg River Mine access road. An argo was used from the parking lot on a gravel road and cut line to the site.

Well Details

Status: Active Damages: None Total Depth (mbtoc): 6.4

Stick-up (m): 0.43 Well Diameter: 139 mm Screened Interval (mbgs): 4.1 - 5.6

Transmissivity (m²/day): Unavailable Hydraulic Conductivity (m/s): Unavailable

Field Parameters (September 2009) Water Level (mbtoc): 2.165

EC: 670 µS/com pH: 6.822 Temperature: 7.3°C

Purge Volume Calculation (L): 45.5 x (TD - WL) Sampling Device: 1" Waterra

Datalogger: Solinst DRC DRC Length (m): 15 Total Depth of Logger (mbtoc): 5.19

Comments: Clear, rust particles, rust odour. Well narrows at 2.99 mbtoc.

Well summary sheets

Groundwater levels

(Surficial deposits)

Groundwater levels

(Basal McMurray)

Groundwater quality trends

(TDS in surficial deposits)

Stable & radiogenic isotopes

Analysed for:

- δ¹8O
- $\triangleright \delta^2 H$
- ▶ δ^{13} C-DIC (for age correction)
- ▶ ¹⁴C activity (PMC)

Oxygen & Deuterium

Worley Parsons

Groundwater ages

Differentiation & fingerprinting

- Continue monitoring, evaluation and reporting (2010)
- Implement GW management framework defined goals, targets & thresholds – (2010/11)
- Develop GW working group to adminster network & communicate results (2010/11)
- Respond to events per the regional investigation plan (as needed)
- Expand network to include additional locations

Thank you

Government of Alberta