

THE WATER

www.groundeffects.org 306.352.1400

Chemical-free treatment of . Frac water . Industrial westewater . Produced water . Mining westewater . Fatent pending

Advanced Water Treatment Technology

- EPT uses no added chemicals
- Patent-pending technology
- Ability to treat a wide range of contaminants simultaneously
- On site treatment
- Cost effective recycling of frac/flowback

Applications:

- Frac-flowback water
- Produced water
- Mining waste water
- Industrial waste water

The Process

- Oil/water separator
- Vacuum enhanced 2 stage electrolytic cells
- •2 stage Submerged nano filtration modules
- Ozone
- Media contactor vessels

Oil/Water Separation

- Oil removal capacity of less than 5ppm using air floatation and coalescing media
- Removal of hydrocarbons allows for more effective and efficient treatment of waste water

Oil/Water Separation

Electrolytic Cells

- Cell contains parallel metal plates that act as either anodes or cathodes
- When an external power source is applied, the plates act as monopolar electrodes. This creates a reactive and excited state causing contaminants to be released from the water and able to be removed
- Released ions neutralize the charges of the particles, thereby initiating coagulation
- Released ions remove undesirable contaminants by chemical reactions that promote precipitation and/or flotation
- Ionization, electrolysis, hydrolysis and other free radical formation can also occur

Electrolytic cells

Induced Chemical Reactions

Iron Anode: Fe \rightarrow Fe²⁺ + 2e-

Cathode: $2H_2O + 2e \rightarrow H_2 + 2OH^2$

Overall: Fe + $2H_2O \rightarrow Fe^{2+}H_2 + 2OH^{-}$

Aluminum Anode: $2AI(s) \rightarrow 2AI^{3+}(aq) + 6e$

Cathode: $H_2O + 6e \rightarrow 3H_2 + 6OH^-$

Overall: $2AI + 6H_2O \rightarrow 2AI^{3+} + 3H_2 + 6OH^{-}$

Electrolysis Of Water

Anode: $2H_2O(1) \rightarrow O_2(g) + 4H^+(aq) + 4e^-$

Cathode: $2H_2O(I) + 2e-(g) \rightarrow H_2(g) + 2OH-(aq)$

Electrolytic cells

- Coagulation is the most important physiochemical reactions occurring
- Precipitation of ions and colloids are held in solution by electrical charges
- EC destabilizes these charges allowing for coagulation to occur
- Coagulation occurs by reducing the net surface charge to a point where the colloidal particles can overcome electrostatic repulsion and allow aggregation to occur

Nano Filtration

- 2 stage -Submerged hollow fiber membranes
- Filtration below 0.04 micron
- Benefits include large surface area, ability to backwash, air burst and chemically clean, if required

Nano Filtration

- Ozone is highly unstable gas that readily donates its extra oxygen molecule to free radical species
- Powerful oxidizing agent that is quick to react particularly to metals
- Very destructive to organic materials, including microorganisms
- Increases the water's wetting ability by reducing water surface tension
- Can reduce friction reducers by up to 50%

03/22/2010

Control Systems

- Satellite telemetry system (STS) is a web server technology that allows you to monitor, optimize and operate the EPT from anywhere in the world, anytime in real time
- GEE STS gives you trend analysis data when you want it
- Converts m^3 treated to \$\$\$ revenue for GEE

- Tertiary treatment using contactor vessels
- Specific media can be used based on customers needs
- Auto backflushing

Results:

Corrosion Enhancing Bacteria >99%

Coliform Bacteria >99%

BOD 99%

Turbidity 99%

Chlorinated hydrocarbons >98%

Hydrocarbons (F1-F4) 85-99%

Herbicide >99%

PCB 99%

Manganese >99%

Barium 87%

Arsenic 99%

Lead 98%

Titanium 99%

Zinc 95%

Copper 91%

PCBs (ug/L)	INITIAL	Post
Aroclor 1016	ND	ND
Aroclor 1221	ND	ND
Aroclor 1232	ND	ND
Aroclor 1242	ND	ND
Aroclor 1248	ND	ND
Aroclor 1254	24	ND
Aroclor 1260	22	ND
Aroclor 1262	ND	ND
Aroclor 1268	ND	ND
Total PCBs	46	ND

Herbicides and PAH Results

	Units	Initial	Post EPT
Napthalene	mg/L	14	0.000163
COD	mg/L	2140	47.7
MCPA	mg/L	59	0.0103
2,4-D	mg/L	<0.16	<0.00010
Bromoxynil	mg/L	190	0.0672

Mining Wastewater

	Units	Initial	Post EPT
Cyanide	mg/L	5.1	0.016
Aluminum	mg/L	0.41	0.016
Arsenic	mg/L	424	6.8
Lead	mg/L	0.18	0.004
TSS	mg/L	970	5
Turbidity	NTU	655	8

Industrial Wastewater

	Units	Initial	Post EPT
Iron (Fe)	mg/L	31.8	0.255
Manganese (Mn)	mg/L	5.74	0.078
Aluminum (Al)	mg/L	4.18	0.28
Barium (Ba)	mg/L	0.341	0.074
Copper (Cu)	mg/L	0.066	0.002
Nickel (Ni)	mg/L	0.106	0.024
Lead (Pb)	mg/L	0.0293	0.0007
Titanium (Ti)	mg/L	0.164	0.002
Zinc (Zn)	mg/L	0.233	0.013
Turbidity (NTU)	NTU	118	2
			ATT
Total Coliform		>2,419,600	<10
E-Coli		51,200	<10

Oil and Gas Wastewater

Parameter	Unit	Initial	Post EPT
Total Suspended Solids	mg/L	243	10
Oil and Grease	mg/L	38.6	1.2
BTEX and F1 (C6-C10)			
Benzene	mg/L	5.28	0.0426
Toluene	mg/L	13.4	0.307
Ethybenzene	mg/L	2.28	0.0565
Xylenes	mg/L	14.2	0.35
F1(C6-C10)	mg/L	150	1.1
F1-BTEX	mg/L	115	0.34
Extractable Hydrocarbons			
F2 (C10-C16)	mg/L	299	3.9
F3 (C16-C34)	mg/L	76.9	0.66
F4 (C34-C50)	mg/L	22.2	<0.3
TEH (C11-C22)	mg/L	330	4.16
TEH (C23-C60)	mg/L	73	0.59

Oil and Gas Wastewater

Parameter	Unit	Initial	Post EPT
Escherichia coli	MPN/100mL	<3	<3
Total Coliform	MPN/100mL	21000	<3

- Turn key service
- Chemical free process
- Mobile treatment system
- Reduces hauling and disposal costs
- Reduce usage of biocides by up to 100%
- Reduce usage of friction reducers by up to 50%

- Eliminate harmful bacteria and scaling qualities.
- Ability to treat a wide range of contaminants simultaneously
- Allows energy companies to recycle 99% of high TDS flowback and produced water.

Economics

- 100% Plug and Play Scalability
- Up to 30% less cost than current practices
- Services based on an "All-In" fee per cubic meter of flow through
- Fee based on contamination level of influent and quality requirements of effluent
- CURRENTLY LOOKING FOR TECH DEMO's

HIRE THE EXPERTS

(306) 352-1400

www.groundeffects.org