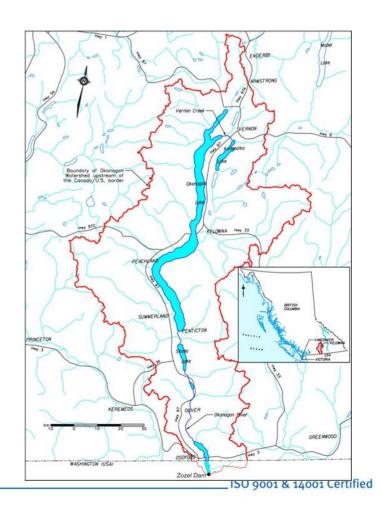


OKANAGAN BASIN WATER SUPPLY & DEMAND PROJECT

HYDROLOGY STUDY & HYDROLOGICAL MODELLING FOR WATER RESOURCE PLANNING

- Hugh Hamilton, P.Ag. Summit Environmental Consultants Inc.
- Lars Uunila, P.Geo. Polar Geoscience Ltd.
- Pat Delaney, P.Eng. DHI Water & Environment Inc.
- Dr. Anna Warwick Sears Okanagan Basin Water Board


- Background Okanagan Basin Water Supply & Demand Project; Will we have enough water?
- Study objectives
- Surface Water "State of the Basin"
- Hydrology Model Development Mike SHE
- Model calibration
- Future scenarios climate, population growth

PROJECT AREA

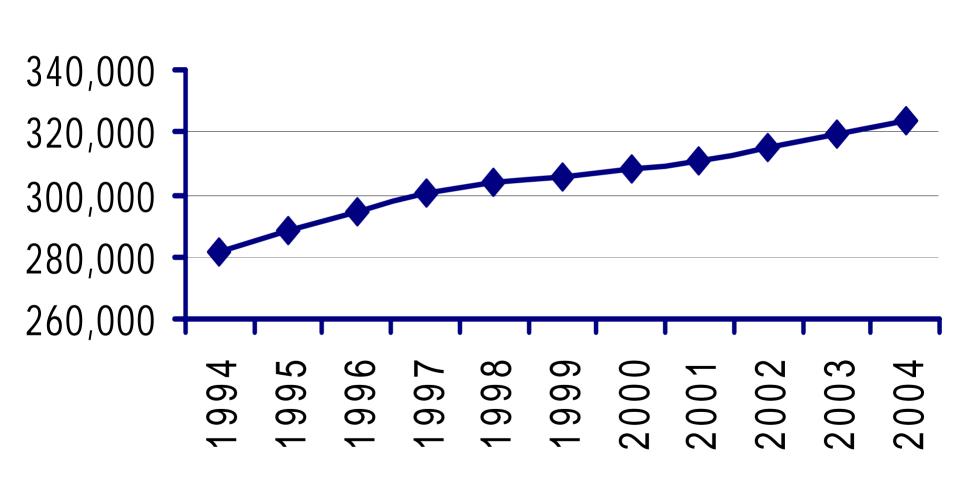
- Okanagan Basin
- Valley bottom is semi-arid
- Growing population
- Agriculture still critically important
- Lakes = lifestyle

OKANAGAN WATER SUPPLY & DEMAND PROJECT (OWSDP)

Purpose:

- science for sustainable water management in the Okanagan
- to aid land use planning
- to support water allocation

Objectives:


- update knowledge of water supply and need
- evaluate demand alternatives and future climate effects

- 1974 Okanagan Basin Agreement a comprehensive evaluation of water resources
- Population has increased beyond the greatest projections of the 1970s – and growth continues
- New concern over climate change will supplies decrease and demand go up in the future?
- Recognition of First Nations' development potential
- Need for Basin-wide approach

Okanagan Population Growth (1994 - 2004)

Initial predictions of climate change effects on Okanagan Streams

	% REDUCTION IN FLOW			
	mid-2020s	mid-2050s		
Lambly	11	30		
McDougall	11	36		
Powers	17	34		
Trepanier	20	39		
Peachland	18	34		
AVERAGE	15	35		

Supply

- Hydrology & Hydrological Model (this presentation)
- Groundwater
- Lake Evaporation
- Climate Scenarios

Demand

- Actual Water Use
- Irrigation Demand
- Instream Flow Needs

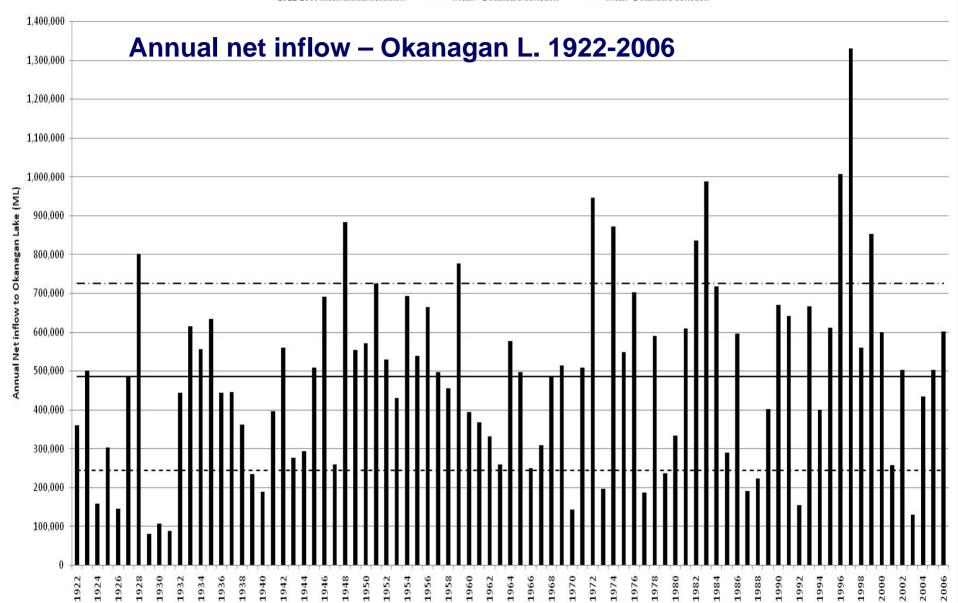
Okanagan Water Accounting Model ties it together

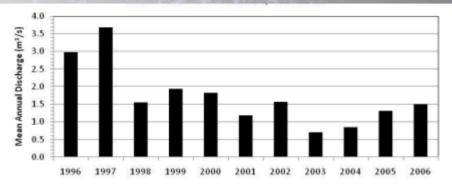

HYDROLOGY STUDY - "State of the Basin"

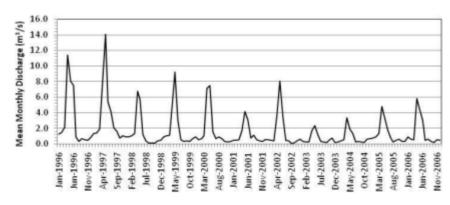
- Compilation of streamflow data (WSC & others) & previous reports
- Determine natural flows in tributaries
- Surface water storage & diversion is very common – streams rated as "regulated"
- To determine natural flows from regulated records, must remove human management – <u>naturalization</u>
- Use data Water Management & Use Study (WMU)

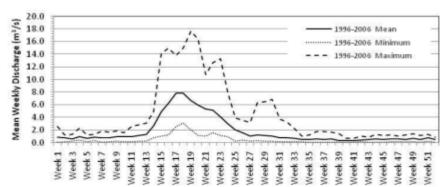
NODES

- 81 "Nodes" or points of interest
- Naturalized flow developed for 72 (not major lakes)
- 11-year standard period (1996-2006)
- 35 WSC stations of use (>150 have existed)

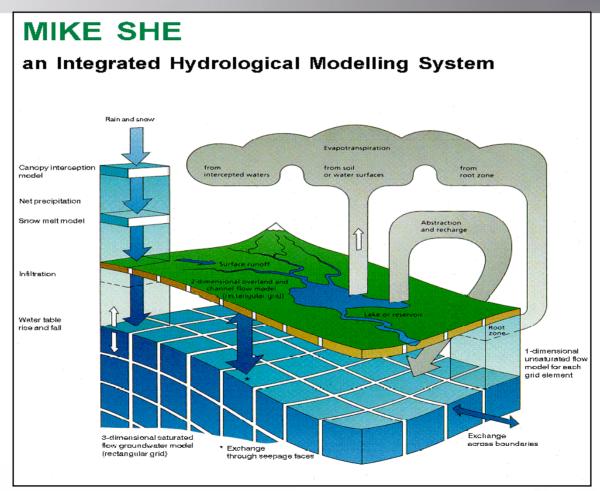

- GIS node drainage areas, median elevation
- Update MOE (Obedkoff 1998) regional relationships with data from up to 2008
- Screen data & fill in gaps (local comparisons)
- Few nodes are at stations only <u>one</u> had 1996-2006 natural data; only 5 natural stations in total had 30+ years
- Naturalize remove water use effect
- Data set 72 nodes x 11 years x 52 weeks
- Data Quality checking & uncertainty ratings


- Snowmelt Apr-July is 75% of annual flow peak May/June
- Mean annual runoff 100 m in south to 200 mm in north (average 117 mm)
- 884,000 ML/yr 83% to Okanagan Lake; 17% to Okanagan River & mainstem lakes south of "big lake"
- East side 34% runoff higher than west side
- Mission Creek 28%, Vernon 7%, Trout 7%
- Residual areas: 17% of area, only 5% of runoff (high AET)



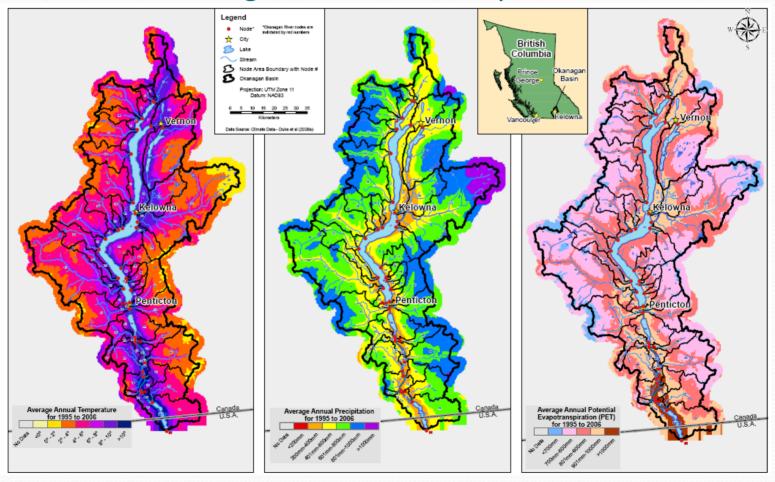

— 1922-2006 mean annual net inflow — · — Mean + 1 standard deviation – - – Mean - 1 standard deviation

SAMPLE OUTPUT – VERNON CK. @ KALAMALKA LAKE

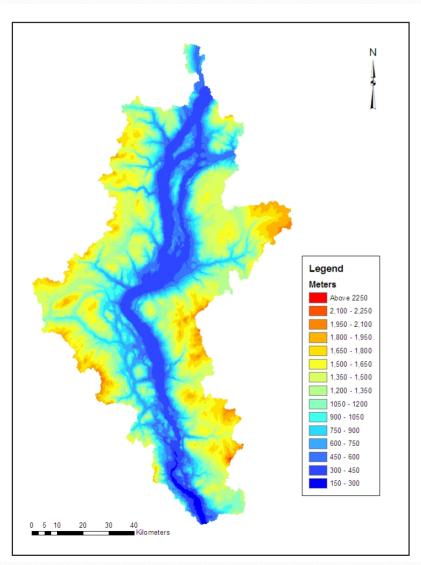


MODEL OVERVIEW

Model components

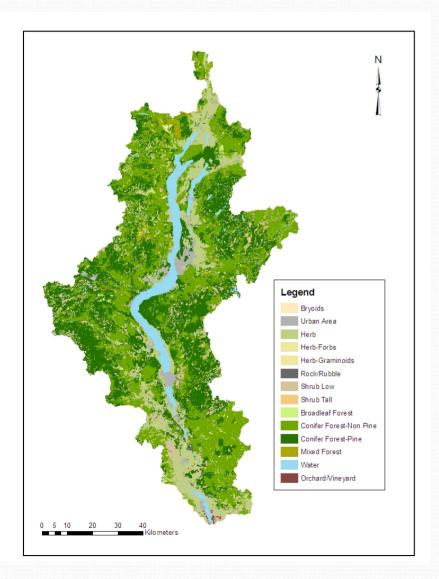

Model Component	Processes Simulated	Methodology	
MIKE SHE OL	Overland sheet flow. water depths, depression storage	Two-dimensional diffusive wave approximation of the St. Venant equations	
MIKE SHE Snowmelt	Snowmelt	Modified degree-day method	
MIKE 11	River and lake hydraulics, flows and water-levels for fully dynamic reaches and flows for kinematic reaches	Fully dynamic wave approximation for lakes and valley-bottom reaches, kinematic routing for tributaries	
MIKE SHE UZ and ET	Flow and water content in the unsaturated zone, ET, infiltration, groundwater recharge	Two-layer water balance method	
MIKE SHE SZ	Groundwater flow, interflow, baseflow	Linear reservoir method	

Model Inputs

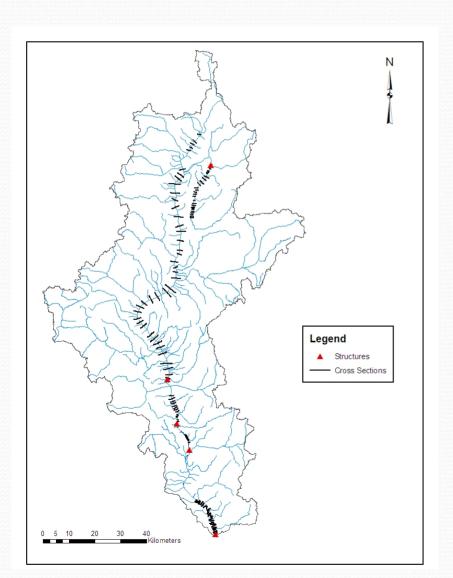

Model Component	Required Input Data
Precipitation	Distribution of precipitation rates
MIKE SHE OL	Topographic map, land use map, distribution of Manning's roughness coefficients, distribution of detention storage, initial water depths
MIKE SHE Snowmelt	Distribution of temperature, reference temperature, degree-day coefficient, minimum snow storage, maximum wet snow fraction, initial total snow storage, initial wet snow storage
MIKE 11	Channel network, cross-section geometries, structure geometries and operational rules, Manning's roughness coefficients, boundary conditions, initial conditions
MIKE SHE UZ and ET	Distribution and rates of potential ET, groundwater table map, soil map, saturated hydraulic conductivities, soil moisture contents at saturation, field capacity, and wilting point, leaf area index, rooting depth
MIKE SHE SZ	Subcatchment boundaries, linear reservoir and baseflow reservoir delineations, reservoir depths, time constants, specific yield

Model Construction – Climate

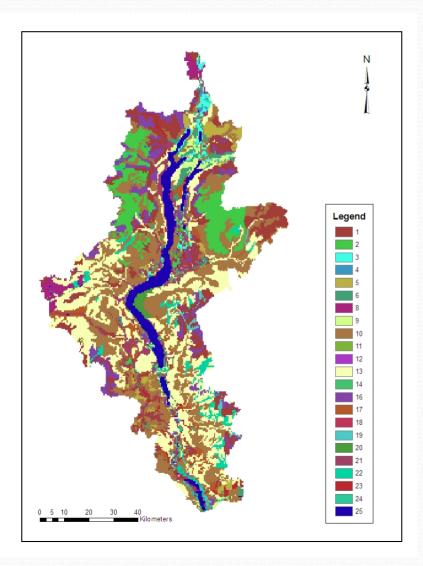
- Okanagan Climate Data Interpolator (Duke et al., 2008)
- 500 x 500-m grid resolution, daily time scale



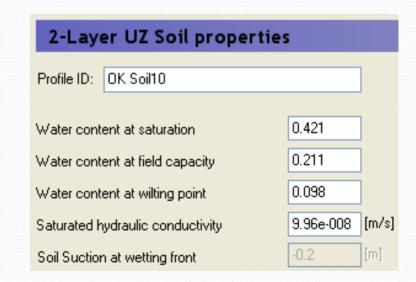
Model Construction - Topography


- Drives the overland flow component of the model
- 30-m resolution Canadian DEM and US DEM merged and re-sampled to 500-m resolution

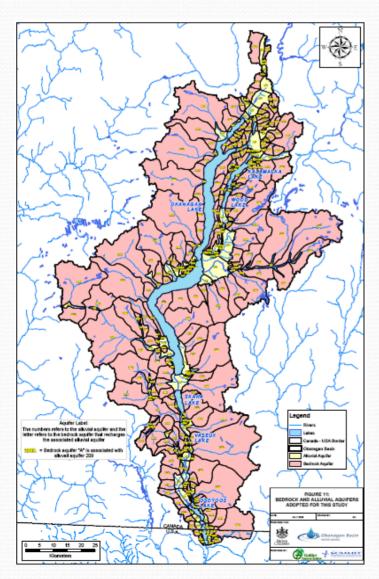
Model Construction – Land Cover


- Used to distribute
 vegetation properties (ET
 component) and roughness
 and detention storage
 values (overland flow
 component)
- Combination of data sources:
 - Base land cover maps (14)
 - Biogeoclimatic zones (4)
 - Disturbance areas (4)
 - Total of 67 zones

Model Construction – Streams and Lakes



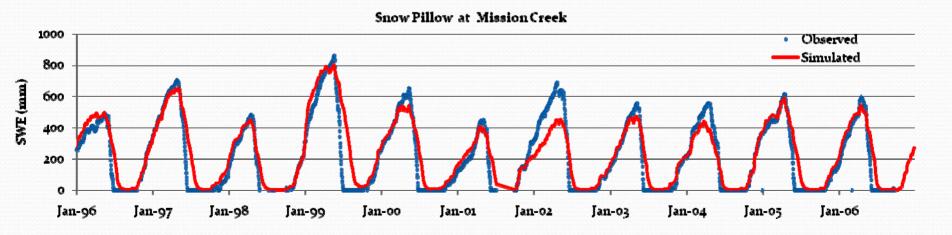
- 187 river branches
- 146 Cross sections (lake bathymetry surveys, flood control surveys for Okanagan River)
- 5 control structures (lake operations)


Model Construction – Soils

- Used to distribute soil properties (unsaturated flow and ET components)
- Four soil maps were merged and aggregated into 25 classes

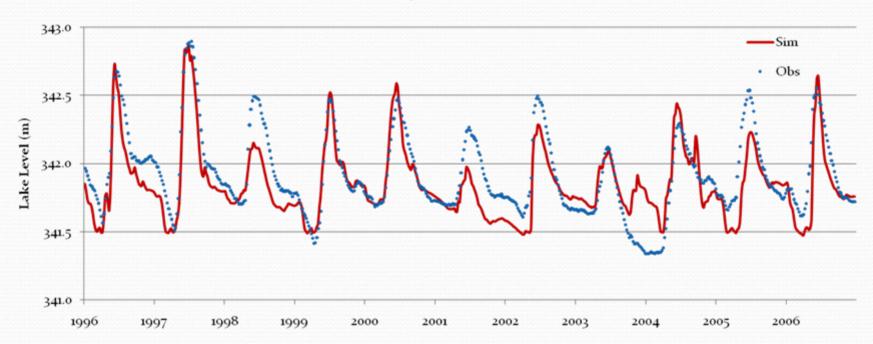
Model Construction – Groundwater

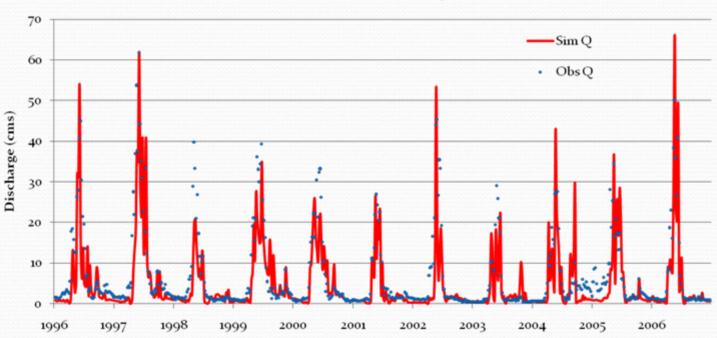
Golder/Summit Groundwater Study


- 324 aquifers (79 alluvial aquifers)
- Recharge occurs primarily in the upland bedrock areas
- The bedrock system consists of a shallow interflow zone and a deeper fractured zone
- ~85% of the upland recharge reports to the shallow interflow zone and flows laterally to recharge down-gradient alluvial aquifers

Hydrology Calibration – Overview

- Overall basin water balance from previous studies
- Snow surveys (19 stations)
- Flow surveys at natural stations (8) and selected regulated stations (5 mainstem stations and 7 tributaries)
- Lake Levels(5 main lakes)


Calibration – Snow Surveys


Calibration – Okanagan Lake

Okanagan Lake Level

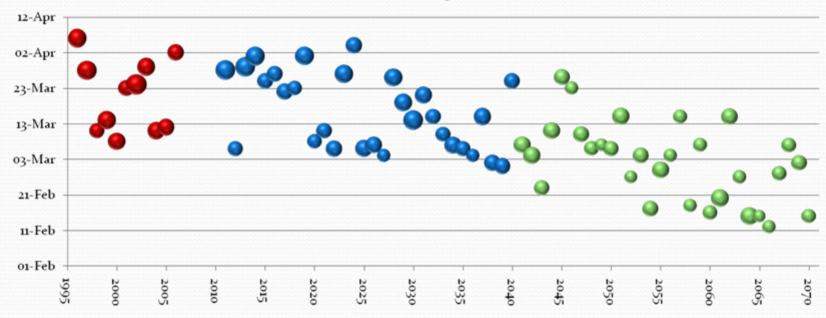
Calibration - Mission Creek

Mission Creek Discharge

Future Scenario Analysis

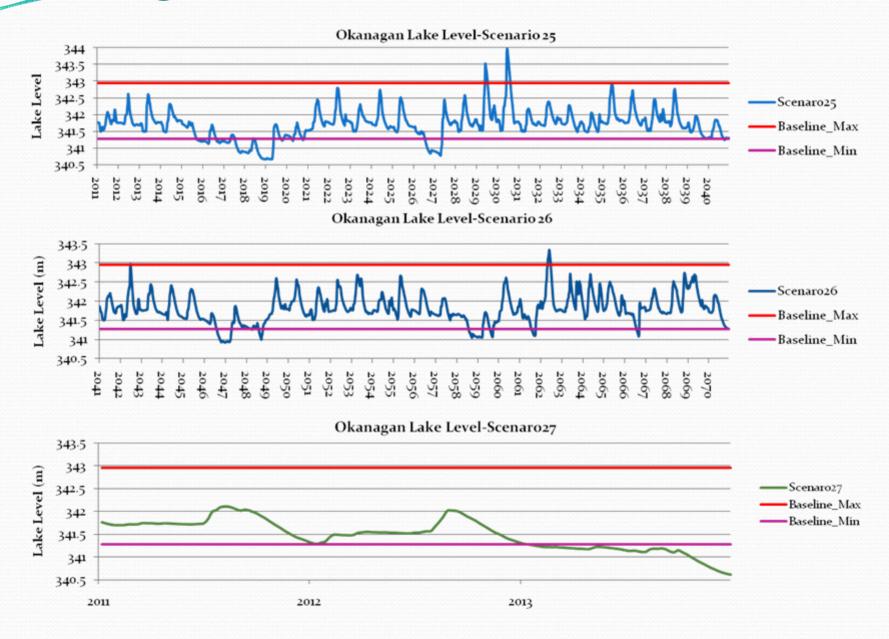
Supply

- Impact of climate change on basin hydrology
- Impact of Mountain Pine Beetle (MPB) on basin hydrology

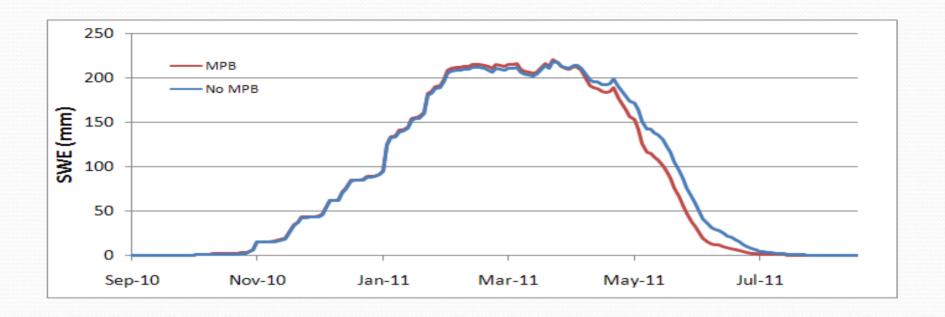

Demand

- Impact of population growth (expected and high)
- Impact of improved water conservation (expected and BC government target of 33%)

Scenario number	Time Period	CO2 Emission scenario	Mountain Pine Beetle	Efficiency	Agricultural Land Base	Population growth
	Т	С	M	E	A	P
	1. 2011-2040	1. Expected		Current use patterns and current trends	1. Present conditions	Expected rate
	1. 2011-2040	1. Expected		Current use patterns and current trends	Present conditions	2. High rate
	1. 2011-2040	 Expected 		Current use patterns and current trends	2. Irrigate all	Expected rate
4	1. 2011-2040	 Expected 	1. Expected	Current use patterns and current trends	2. Irrigate all	2. High rate
	1. 2011-2040	1. Expected		2. 33% Efficiency	1. Present conditions	Expected rate
	1. 2011-2040	1. Expected		2. 33% Efficiency	1. Present conditions	2. High rate
	1. 2011-2040	1. Expected		2. 33% Efficiency	2. Irrigate all	Expected rate
8	1. 2011-2040	1. Expected	1. Expected	2. 33% Efficiency	2. Irrigate all	2. High rate
	1. 2011-2040	2. Reduced		Current use patterns and current trends	1. Present conditions	1. Expected rate
	1. 2011-2040	2. Reduced		Current use patterns and current trends	1. Present conditions	2. High rate
	1. 2011-2040	2. Reduced		Current use patterns and current trends	2. Irrigate all	Expected rate
12	1. 2011-2040	2. Reduced	1. Expected	Current use patterns and current trends	2. Irrigate all	2. High rate
	1. 2011-2040	2. Reduced		2. 33% Efficiency	1. Present conditions	Expected rate
	1. 2011-2040	2. Reduced		2. 33% Efficiency	1. Present conditions	2. High rate
	1. 2011-2040	2. Reduced		2. 33% Efficiency	2. Irrigate all	Expected rate
16	1. 2011-2040	2. Reduced	1. Expected	2. 33% Efficiency	2. Irrigate all	2. High rate
	2. 3 driest years 2011-2100	1. Expected		Current use patterns and current trends	1. Present conditions	Expected rate
	2. 3 driest years 2011-2100	1. Expected		Current use patterns and current trends	1. Present conditions	2. High rate
	2. 3 driest years 2011-2100	1. Expected		Current use patterns and current trends	2. Irrigate all	Expected rate
20	2. 3 driest years 2011-2100	1. Expected	1. Expected	Current use patterns and current trends	2. Irrigate all	2. High rate
	2. 3 driest years 2011-2100	1. Expected		2. 33% Efficiency	1. Present conditions	Expected rate
	2. 3 driest years 2011-2100	1. Expected		2. 33% Efficiency	1. Present conditions	2. High rate
	2. 3 driest years 2011-2100	1. Expected		2. 33% Efficiency	2. Irrigate all	Expected rate
24	2. 3 driest years 2011-2100	1. Expected	1. Expected	2. 33% Efficiency	2. Irrigate all	2. High rate
25	1. 2011-2040	1. Expected	1. Expected	3. Present conditions	1. Present conditions	3. Present conditions
26	3. 2041-2070	1. Expected	1. Expected	3. Present conditions	1. Present conditions	3. Present conditions
27	2. 3 driest years 2011-2100	1. Expected	2. Present	3. Present conditions	1. Present conditions	3. Present conditions


Impact of Climate change on Snow Condition

Maximum SWE Occurring Date and Value



- SWE tends to decrease
- Snow tends to melt earlier

Okanagan Lake Level

MPB Impacts

- Slight increase in peak SWE
- Maximum 12-day earlier melt

SCENARIO PROJECTIONS:

- If we assume that only climate changes, and everything else stays the same, we would use on average 9% more water over the 2011–2040 period than we do now, and 18% more over 2041–2070.
- If climate and population both change as expected, and all reasonably irrigable land is developed (2011-2040), annual water use would average 19% higher over that period than now, even if we continue to introduce water use efficiencies at the same rate we are doing today.
- If we follow the BC Provincial guideline of achieving 33% improvements in water use efficiency by 2020, use would still increase by 12%

- Climate models show negligible change in total annual precipitation, but air temperatures expected to increase
- More winter precipitation will fall as rain & high elevation snowpack will melt sooner; ~1 week over 2011-2040 period and 2-3 weeks over 2041-2070 period
- Climate change alone or in combination with increased irrigation and population growth is not expected to significantly affect <u>average annual</u> streamflows
- However, between June and September, streamflows Would decrease by roughly 1/3 over the 2011-2040 period, and 2/3 over 2041-2070 (relative to current conditions)
- These reductions balanced by increased streamflows in fall and winter

SUMMARY:

- Okanagan Basin Water Supply & Demand Project: Phase 2 now complete
- Have much better understanding of natural streamflows & factors that affect variability
- Better, but still rough, understanding of groundwatersurface water interaction
- Lake evaporation estimates rely on models, which produce highly variable results
- A working model (using Mike SHE) in place that allows water managers to assess how supply is affected by natural factors (incl. climate change) and by demand
- Phase 3 Policy & planning changes; refine models