

Incorporating Geologic Models into Groundwater Flow Models for Basal Aquifer Depressurization

Presented by Rudy Maji, Ph.D.

Talk Outline

- Demonstrate how we are capable of directly honouring detailed geologic models in our groundwater modelling projects.
- Basal Aquifer Depressurization (DP) for a surface mineable oil sands project provides context.
- An alternative approach incorporating 3D geologic modelling results is compared and contrasted with the conventional modelling method.

Methodologies

Conventional Methodology

Alternative Methodology

- "Layer Cake" Geology.
- Good for Homogeneous Systems.
- Heterogeneous 3D Geology.
- Honours Complex Interbedded Geology.
- Honours Oil Companies Detailed geologic model into groundwater flow model.

Sometimes depositional environment is so complex that it is not easy to lump into layer cake model.

Project Objective

➤ To depressurize the water saturated sands in the lower McMurray Fm so the bitumen saturated McMurray sands can be safely mined by open pit mining methods.

Geologic Setting

- Bitumen ore zone within the McMurray Fm over the project area.
- Predominantly inter-bedded Sands with Shales and other low K materials.
- Traditional interpretation consists of fluvial channels in the Lower McM; estuarine sequences in the Middle and Upper McM.
- "Water Sands" generally found lower in the sequence, but sand lenses can be separated by non-aquifer material.
- The ore zone has significant bitumen saturation resulting in poor hydraulic conductivity (aquitard).

Conventional Study Methodology

Motivation For Alternative Approach

- Difficulty in making the water sand isopach pick in more complex geologic environments (which sand lenses to include as part of the basal aquifer?).
- Difficulty in vertically setting the aquifer stacked directly on the Devonian Unconformity or "hung" from an interpreted aquifer top structure?

Motivation For Alternative Approach

- ▶ If aggressive depressurization occurs, the heads in parts of the basal aquifer may drop to within the aquifer → unconfined conditions & pore dewatering.
- If the aquifer isopach is not vertically placed correctly, the model will not simulate this behaviour.
- More realistic conceptual model for areas with more complex hydrostratigraphy → allows for additional investigations to aid decision making (perched water sand dewatering / geotechnical considerations etc.).

Methodology

Methodology - Upscaling

Total No. of Blocks = 64

Total No. of Blocks = 8

- Upscaling geology to coarser grids for numerical efficiency can be accomplished by:
 - Assigning hydraulic conductivities to local scale geologic blocks.
 - Determining the geometric mean of a grouping of local scale blocks.
 - 3. "Binning" the resultant K's of the upscaled blocks and assigning a geocode.

Methodology

Example Section Using Alternative Methodology

Example Section Using Conventional Methodology

Lessons Learned

- Honouring detailed geologic models is feasible with current computing resources.
- Care must be taken to ensure aquifer connectivity is maintained during the Upscaling Process.
- Post-processing is not as straightforward as for a traditional "layer cake" type of model.

Alternative Approach (Pros/Cons)

Pros

- Honours Client's Geology Directly.
- Provides More Realistic Head Distribution for Complex Hydrostratigraphic Settings.
- Opportunities to Map Various Aquifers Perched and Otherwise.
- More Sophisticated Management Tool.

Cons

- Additional Pre/Postprocessing is Required.
- Longer Execution Time; It Means Faster Computers are Required.

Applications

➤ A great deal of effort has spent in developing detailed 3D geologic models — we can now honour these high-resolution dataset in our groundwater models where that level of detail is deemed appropriate for the project at hand.

Applications

- Useful tool for identifying data gaps that helps in planning field programs
 - High-resolution 3D geologic model provides a more realistic site conceptual model when planning pumping tests in more complex settings.
- Easy to map water sands above and below the base of mineable ore.
 - Accordingly, depressurization/dewatering plans can be refined for more complex settings.

Handling Drawbacks

- Faster Computers are essential to simulate alternative approach.
 - For Alternative approach the model takes 4 to 5 hours to complete the simulation, while the Conventional Approach takes only half an hour to one hour.
 - ➤ We would like to run the model in our Golder Linux Cluster system (total 250 CPUs cost about \$100K)
- Parallel Computing may be required to speed up the solution time.

Future Applications

- Application with FEFLOW
- Upscaling method would be tricky for Finite Element Mesh.

Other Applications

Stochastic Simulations to obtain the uncertainty involved in number of DP wells due to aquifer heterogeneity.

The Team

- ➤ Rudy Maji Calgary
- Karl Lawrence Calgary
- Don Haley Calgary
- > Ken Baxter Calgary

