

Energy Production from Waste Using The Anaerobic Membrane Bioreactor (AnMBR) Process

Peter McCarthy (pjm@adi.ca)

ADI Systems Inc.

Water Technologies Symposium 2010 (WaterTech 2010)

April 21-23, 2010 Fairmont Banff Springs

Acknowledgements

Kubota Corporation: Masashi Moro Tetsuya Yamamoto

ADI Systems Inc.: Scott Christian

Shannon Grant

- A form of high-rate anaerobic digestion technology
- Uses physical membrane barrier to retain biomass
- Creates renewable energy source in the form of biogas (methane)
- In full-scale use since 2000, full-scale tests since mid-1990's

- Excellent for low flow, highly-concentrated (high COD/BOD/TSS)
- Compact footprint and simple operation/control

AnMBR Technology

- Membrane barrier allows for high mixing intensities
- Organic loading rates of 15 kg/m³·d on high energy substrates
- HRT and SRT are dependant upon waste/wastewater type
- Thermophilic (130°F/55°C) and mesophilic (100°F/35°C) systems
- Thermophilic results in better removals, more biogas and reduced sludge production); membrane overcomes typical thermophilic AD downfall---solids loss
- In-situ cleaning; simple citric acid cleaning procedure every 1-3 months

AnMBR Technology

Anaerobic MBR (AnMBR)

Comparison of Anaerobic Digestion Processes

Conventional Anaerobic System

Anaerobic MBR System

Applications

Alcohol Stillage

Parameter	Influent	AnMBR Effluent	MBR Effluent
COD, mg/l	75,000 -110,000	1,000 – 2,500	< 100
BOD, mg/l	63,000 -79,000	500 – 1,500	< 5
TSS, mg/l	25,000 - 35,000	< 5	< 5
TS, mg/l	35,000 – 80,000	2,500 – 5,000	500 – 1,000
TN, mg/l	2,000 – 5,500	500 – 2,500	**
FOG, mg/l	1,600 -	< 50	< 5
TP, mg/l	500 – 1,200	*	**
Temp, °F	180-200	130	

^{*-} less than 20 mg/l can be achieved with chemical addition

Shochu/Awamori Distilleries (barley, sweet potato, rice)

^{** -} depends on level of BNR performed

Food Production/Processing Wastes

Full-scale energy generation from food processing wastes to date:

- Confectionary (jellies and beverages)
- Bean processing
- Waste dairy (milk processing) products
- Prepared meals / kitchen food waste
- Potato processing
- Salad dressing / BBQ sauce production wastes

Any other strong, concentrated wastes would be applicable.

Food Production/Processing Wastes

Municipal Garbage

Nishi-Tenboku Sanitation Center, Hokkaido, Japan

Influent streams to facility:

1.Night soil and septic tank sludge (5,300 gpd)

2.Waste activated sludge from nearby POTW (3 ton/d)

3.Municipal garbage (5 ton/d)

Organic municipal garbage is anaerobically digested for energy generation; high energy substrate (250,000mg/l COD; 20% solids)

Garbage to energy

Basic process:

- 1.Break open bags, separate inorganic material from organic
- 2. Solubilize solid waste to facilitate fast anaerobic digestion; remove remaining inorganic materials
- 3. Anaerobic digestion using AnMBR process
- 4. Collect, scrub, and store biogas
- 5. Polish liquid anaerobic effluent in aerobic MBR and discharge
- 6.Process waste sludge and reclaim as soil additive

Garbage to energy

- Anaerobic reactor operates at thermophilic temperatures to maximize solids destruction and biogas production
- Biogas is utilized to heat reactor and buildings at facility
- Permeate is polished in aerobic MBR and discharged
- Aerobic WAS also digested in AnMBR

Garbage to energy

Industrial Wastewater

Anaerobic Reactor ADI- BVF

EQ Tank

AnMBR

SBR (now SO tank)

First Full-Scale AnMBR in North America and Largest in the World!

Membrane Unit Installation

Installed Membranes

Biogas Scour Blowers and SMTs

Ken's Foods AnMBR Operating Results (First 12 months)

Parameter	Raw Wastewater	Permit Discharge Limits	Actual AnMBR Effluent	Actual Removals (%)
Flow rate (avg), m ³ /d	475	475		
Flow rate (peak), m ³ /d	530	530		
BOD, mg/L BOD, kg/d	18,000 8,600	 180	16 5	99.9
COD, mg/L COD, kg/d	39,000 18,500		190 62	99.5 99.5
TSS, mg/L TSS, kg/d	12,000 5,700	230	< 1 < 1	100
FOG, mg/L	1,500	100	< 5	100
рН		6-9	7.1	

High Quality Anaerobic Effluent

AnMBR Effluent

< 25 mg/L BOD

< 2 mg/L TSS

Biomass

2.0 - 4.5 % solids

75% volatility

Biogas Production and Utilization

- AnMBR produces biogas (methane) from the anaerobic digestion process
- Biogas is utilized in a dual fuel boiler (natural gas + biogas) to produce hot water supply
 - excess biogas is flared at an enclosed flare
 - hot water used for reactor heating (controlled at 35 °C), as well as building heat, hot water supply for other in-plant uses
- Average biogas production:
 - 5,800 m³/d biogas produced
 - CH₄ = 60 %
 - CO₂ = 35%, ~ 1% O₂, and 50 ppm H₂S

Municipal Sewage Sludge

Primary sludge, TS ~ 80% degradable

2) AnMBR system

Much smaller reactor; great advantage

AnMBR technology holds great promise for some new applications as well:

- Cellulosic ethanol stillage
 - Stable thermophilic operation allows for digestion of lignins
 - Destruction of designer enzymes before discharge
- Other fuel ethanol production stillages and syrup (corn/wheat/milo/etc.)
- Separated MSW (food and garden wastes)
- Modular, packaged systems (already in use)
- Many others

New Applications

Kubota received the gold medal "New Energy Award" in 2003, a prize given by the Japanese New Energy Foundation, an extra-departmental body of the Japanese Ministry of Economy, Trade and Industry.

Biomass fuel manufacturing
"Methane fermentation system using
submerged membrane"

Kubota AnMBR technology received the Japanese "New Energy Award"

Questions or Discussion?