

Groundwater Remediation Using Engineered Wetlands

A case study – British Petroleum,

Wyoming Casper

Ryan Devlin B.Sc. Chem. Water Resource – Business Unit Leader April 27, 2009

Introduction

Who we are

- North American Wetland Engineering (1997)
- Jacques Whitford (2007)
- Stantec (2009)
- Canadian/American environmental consulting firm
 - Design engineering
 - Full in-house CAD, construction observation
 - Wastewater operations
- National and International Experience
- Pilot testing facility
- Treatment Wetlands, 2nd Edition, Kadlec and Wallace

Engineered Wetland Design

Treatment Wetlands, Second Edition Primary textbook in the world for engineered wetland design (Kadlec & Wallace, 2008)

Small Scale Constructed
Wetland Systems
Water Environment Research Foundation
(Wallace & Knight, 2006)

Process Design Engineers

HSSF Process

Vertical Sub Surface Flow Wetland Design

Industrial Overview

Treatment for complex waste streams

- Oil and Gas Downstream Refining
- Mining
- Transportation/Airport
- Food Processing
- Contaminated Groundwater
- Solid Waste

Industrial Projects

Buffalo International Airport, NY Deicing fluid treatment using Wetlands

Schilling Farm, MN
TCE contaminated soil

Minnesota Municipal Power Agency Storm water harvesting and reuse using wetlands – Cooling water

Wellsville, New York Engineered wetland petroleum hydrocarbon remediation project for BP (1,090 m³/day)

Engineered Wetlands

- Engineered to optimize biodegradation of organic contaminants
- Designed with Forced Bed Aeration[™] to increase aerobic biodegradation rates
- Equipped with reactive media to adsorb contaminants
- Characterized by controlled hydraulic loading designs

Types of Wetlands

- Free Water Surface (FWS)
- Horizontal Subsurface Flow (HSSF)
- Vertical Subsurface Flow (VSSF)
- Tidal Flow (TF)

Engineered Wetlands

- Aerated (cold climates)
- o fill-and-drain (warm climates)
- o reactive media (ammonia, phosphorus, etc)
- industrial wastewaters

NAWE

Treatment Process Selection

Stantec Wetland Treatment Chemistry

- Aerobic wetlands
 - o Fe, Mn
- Sulfate reducing wetlands
 - o Cu, Cr, Ni, Mo, As etc...
- Alkalinity-adding wetlands
- BOD, COD
- Nitrification and de-nitrification processes
- Naphthenic acids ***
- TCE, DCE,
- LNAPL, BTEX, Hydrocarbons, PAH,
- Salts
 - Wetlands are biological treatment reactors; will not remove salts unless thermodynamically favorable

Natural vs. Mechanical Systems

Energy and O&M Needs LEAST MOST Mechanical **Engineered Natural Systems Treatment** Wetlands **Systems Area Requirements LEAST MOST**

Selecting treatment options

 There is a trade-off between land and mechanical complexity:

Free water surface wetlands

Olentangy River Wetland Research Park Ohio State University

Vertical subsurface flow engineered wetland

Horizontal subsurface flow engineered wetland

Wetlands & Remediation

- Oxidizing wetland environment
 - Oxidation & precipitation of iron, managanese
 - Degradation of TPH and other organics
 - Ammonia
- Reducing wetland environment
 - Reductive dehalogenation for chlorinated solvents
 - Reduction of sulfates (sulfide precipitation of copper, nickel, etc.)

BP Casper Refinery Site

- Operated 1908 to 1991
- Estimated 30 million gallons of hydrocarbons had leaked in a shallow alluvial aquifer (113,550 m3)
- Since 1981, 37,000 m³ of LNAPL has been recovered.
- Wide range in annual temperature
- Record high: 40 °C
- Record low: -40 °C
 Largest remediation wetland in No

Largest remediation wetland in North America - 2006

BP Refinery: Casper, Wyoming

- Benzene and iron remediation over long timeframe (50 to 100 years)
- Design flow rate: 1.6 MGD or 6000m3/day

Parameter	Influent Concentration (mg/L)	Required Effluent Concentration (mg/L)
Benzene	1.5	< 0.05
Total iron	>6	<2

LNAPL distribution

Former refinery site reuse plan

Petroleum Hydrocarbons

- Pilot-scale system designed and operated for BP in Casper, Wyoming, USA
- Former refinery with petroleum hydrocarboncontaminated groundwater
- Pilot-system operated under aerated and nonaerated conditions
- Effect of insulation also studied
- Results used to design full-scale system treating 6000 m³/d

Casper Pilot

- 4 cells
- Vertical upward flow
- With and without aeration
- With and without wetland sod

Pilot results: aerated vs. non-aerated

Area: 10 acres → 3.3 acres

Pilot Results: Benzene

Pilot Results: MTBE

Casper Rate Coefficients

k_A, m/yr, based on 3 TIS

	Aeration		No Aeration	
Compound	Wetland Mulch	No Mulch	Wetland Mulch	No Mulch
Benzene	518	456	317	226
BTEX	356	311	257	244
TPH	1058	965	725	579
MTBE	64	60	35	22

Full scale treatment system

Cascade aerator

Cascade Aerator

- Oxidize Fe²⁺ to Fe³⁺
- Benzene stripping reduces concentration to ~ 0.1 to 0.8 mg/L

Free water surface wetlands

- Iron sedimentation
- Deep zones for sludge removal

Iron Removal Wetlands

HSSF engineered wetland

Forced Bed Aeration™

HSSF engineered wetland construction

HSSF engineered wetland

Approaching design flow 2004-2006

0.2

Benzene data: 2004-2006

Jun-04 Oct-04 Feb-04 Jun-05 Oct-05 Feb-06 Jun-06

Total iron data: 2003-2004

Stantec Cost savings to BP: significant

Conclusion

 Construction of an Engineered Wetland saved BP over \$12.5 million compared to a conventional plant

Wetland \$3.4 million Air stripping &Catalytic oxidation \$15.9 Million

- Anticipated to save \$15.7 million in Operating costs over the next 50 years.
- Currently treats 6000m3/day of contaminated groundwater.
- Is now a terrific amenity to the community.

Casper site 2006

Questions?

