Pilot Testing of Groundwater Circulation Well Technology for a Caustic Groundwater Plume in a Coastal Aquifer

presented by

Lynda Smithard, P.Eng.

URS Corporation, Vancouver, BC

Background

- a portion of the groundwater beneath chloralkali plant has pH values in excess of 7.0 (caustic)
- Client spent 5 years investigating and monitoring the groundwater within this area of the site
- From June 04 to April 05 a pilot test was conducted to assess a GCW designed to neutralize the high pH groundwater

pH Plume Distribution

pH Plume Distribution

Summary of Receiving Environment Study Results

pH Plume

- Discharge area located by direct push sampling from a barge
- Area of discharge approximately 75 m²
- Groundwater discharging from freshwater and saline zones of coastal aquifer

Shallow Discharge Zone

Deep Discharge Zone

Off-Site Receiving Environment Groundwater Discharge Area

Initial System Design

URS

Initial System Design

- Several start-up issues due to scaling of equipment and safety aspects associated with HCL injection
- System had to be re-configured in June and a new pump installed

Remedial System Monitoring

- Performed monthly monitoring of pH in system wells
- pH observed to vary seasonally and over the daily tidal cycle
- Comparison of annual pH values shows a decrease in some wells

pH over Daily Tidal Cycle

Seasonal pH measurements

MW22S pH vs. time

Seasonal pH measurements

Seasonal pH measurements

- Pumping rate observed to decrease over duration of pilot trial
- Performed groundwater modeling to predict groundwater treatment zone at the end of the pilot trial

- Decrease in pumping rate attributed to scale formation
- Scale issues associated with extraction of groundwater high in pH and salinity
- Bench tests using soil and groundwater from transition and saline zones produced a gel (salt) and white precipitate

- Bench tests using soil and groundwater from freshwater zone produced no precipitates
- Bench tests indicated scale issues related to pH reduction in saline water

Supplemental Pilot Trial

- Re-configured the system in 06 to assess feasibility of intermediate injection point (well hydraulics / fouling / scaling)
- Installation of an intermediate injection well above the depth of saline groundwater
- Monitored pump rates, water levels and pH in surrounding monitoring wells

URS

Supplemental Pilot Trial – Average Daily Pump Rates

Supplemental Pilot Trial Results

- Initial pumping rate between 30 and 40 gpm
- Decreased capacity of injection well required old intermediate extraction well to be used for overflow
- Final pumping rate = 8 gpm
- Transducer data suggested fouling in new injection well however no scale noted in video inspection completed at end of test

Pilot Trial Conclusions

- GCW technology is not viable at the site
- Groundwater pumping is a viable remediation method for the shallow pH plume
- GCW pilot test fouled the deep soil formation creating a zone of low conductivity
- CO2 injection is an effective method of pH reduction

