Biodegradation of Hydrocarbons under Nitrate and Sulfate Reducing Conditions

David Abranovic P.E., ERM, Scottsdale, AZ Paula Chang, ERM, Scottsdale, AZ Richard Brown, ERM, Ewing, NJ

WaterTech 2008

Contents

- Summary of Sulfate Nitrate Reduction
- Site Background and Setting
- Environmental Setting
- Laboratory Testing Results
- Pilot Test Design and Implementation
- Pilot Test Results
- Full Scale Remediation Strategy

Hydrocarbon Biodegradation

Why Sulfate?

Electron Acceptor (EA)	Maximum Concentration (mg/L)	Mass of benzene degraded per unit mass of EA	Potential Benzene Degraded (mg/L)	Issues
Oxygen (in air)	9 - 10	0.33	3.0 – 3.3	•Limited solubility
Pure Oxygen	60 - 70	0.33	19.8 – 23.1	•Numerous oxygen sinks•Potential aquifer clogging•Biofouling near injection point
Sulfate	100 – 250*	0.22	22.0 – 55.0	 Hydrogen sulfide; never documented as an issue in the field Secondary MCL for sulfate – 250 mg/L*
Nitrate	80 - 100	0.21	16.8 – 21.0	•DW concern •Primary MCL – 10 mg/L NO ₃ -N (45 mg/L NO ₃)
Iron (III)	0 - 1	0.024	0 – 0.024	Very low solubility Aquifer clogging

Sulfate/Nitrate Advantages

- Most HC plumes are anaerobic and depleted of soluble electron acceptors (nitrate and sulfate)
- Sulfate reducing bacteria are ubiquitous and rapidly grow in HC rich anaerobic conditions
- Nitrate may oxidize iron sulfides to sulfate and boost the total electron acceptor pool
- Suitable for a variety of hydrocarbons gasoline, gas condensate, alkanes, PAH, diesel…
- Nitrate and sulfate salts are much more soluble than oxygen
- Lower cost alternative \$ 19 to 150/t vs \$16,500/ton for ORC

Installation Restoration Program (IRP) Site 25, 148th Fighter Wing (FW), Duluth, MN

Site Background and Setting

- Water table from 3 to 12 ft bgs, due to topographic slope
- Interbedded silts and clay to approximately 20 ft bgs
- Primary contaminant of concern: Benzene
- Abandoned upgradient UST source for BTEX, GRO and DRO
- Receptor of concern is a nearby wetland

Contaminant Concentrations

Treatability Study Set-up

- Site groundwater and soil
- BTEX, GRO and DRO spiked at time zero
- Treatment Conditions:
 - Sterile Groundwater Control groundwater only
 - Ambient (Live) Control groundwater and soil
 - Sulfate Amended 400 to 1,000 mg/L
 - Sulfate and Nitrate Amended 400 to 1,000 mg/L and 4 to 8 mg/L, respectively

Treatability Study Results

Treatability Results Summary

- From 0 to 13 weeks, the nitrate+sulfate treatment show >98% decrease in Benzene, Toluene, Xylenes and GRO
- From 13 to 26 weeks the % change is almost equal in the ambient, sulfate and sulfate+nitrate treatments, indicating that the degradation rate caught up after the longer incubation period
- Soil GRO and DRO concentrations dropped significantly in all three treatments over the 26 week period

Pilot Test Design

- Sulfate (Epsom Salt,MgSO₄, 400 mg/L) Nitrate (as KNO₃, 4 mg/L) and dosages from treatability test
- 850 lb of of 40% MgSO₄
- 6 lb of 62% KNO₃
- 4,650 gal GAC filters tap water used to batch-mix injection solutions
- ROI of 20 ft, targeted top 12 feet below water table
- Injection grid of 10 points
- Distribution testing at 5, 10 and 15 ft from two injection points

Pilot Test Design

Ideal Field Conditions vs. Reality - a Difference of

40 Degrees

Field Set-up

Pressure Pulse Injection - WavefrontTM

- •Pressure wave induces pore throat dilation
- Hornet Model Name
- •Injections were performed with and without the pressure pulse
- •The unit is pressure sensitive – needs a minimum pressure (can be set by manufacturer)
- Affects ability to valve down injection pressures/rates

Control Box

Injection Point Rod

ROI Confirmation Sampling

- Injections were performed downgradient to upgradient
- 6 of the 10 injection points used Wavefront
- •Groundwater samples were collected a radia distances from injection points at 5, 10, and 15 feet
- Analyzed using a LaMotte Field Test Kit for Sulfate, range 0 – 200 ppm

ROI Monitoring

	Sulfate		
Location	(mg/L)	Wavefront	

I1-5	160-200	Y
I1 - 10	160-200	Y
I1-15	50-80	Y
I2-5	160-200	NA
I2-10	160-200	NA
I2-15	160-200	NA
I2-5	>200	N
I 2- 10	>200	N
I2-15	80-120	N

Results - Test Area Shallow Well

Results – Test Area Deep Well

Results - Down Gradient Shallow Well

Pilot Test Conclusions

- Sulfate/nitrate reduction is an effective tool for accelerating natural attenuation of HCs in groundwater
- Removal of free-phase hydrocarbons is necessary for successful application sulfate reduction
- Based on the rapid consumption rates, high sulfate/nitrate dosing will likely not result in groundwater exceeding secondary standards

Future Site Work

- High Vacuum Extraction for source area separate phase HC removal
- Sulfate/Nitrate amendments to address residual dissolved phase HC remediation
- Monitored Natural Attenuation as final polishing step

Questions

