Integration of Chemical and Biological Technologies for Remediation of Contaminated Soil and Groundwater

Leonard Chan, M.Sc

About Canada Colors

- Sole Distributor for Regenesis Products in Canada
- Largest independent distributor in Canada
- ▶ Full service provider of over 5,000 commodity and specialty products
 - Environmental & Water Treatment
 - Industrial Solvents
 - Food and Fine chemicals
 - Coatings & Polymer additives
 - Oil & Gas
 - Soap & Detergent
 - Mining
 - Pulp & Paper

Treatment Train

Source Area:

Dig & Dump Thermal

SVE

ISCO

Stabilization

Core Plume Area:

ISCO

Bioremediation

Pump & Treat

Dissolved Plume Area:

Bioremediation

Natural Attenuation

ISCO

Contaminant Concentration

In-Situ Chemical Oxidation (ISCO)

- Chemical oxidation reaction involves the breaking of chemical bonds and the removal of electrons
- Electrons are transferred from the contaminant to the oxidant
- The contaminant is oxidized and the oxidant (electron acceptor) is reduced

Bioremediation

- The process of using microorganisms, fungi, or enzymes to treat environmental contaminants
- Aerobic degradation
 - BTEX, TPH, PAHs
- Anaerobic degradation
 - PCE, TCE, DCE, TCA, DCA
- Biostimulation: the addition of nutrients to stimulate bioremediation

In-Situ Remedial Design

- Oxidants or substrates typically injected using direct-push equipment
- Spacing of injection points is dependent on:
 - Geology
 - Plume Size
 - Product
- Product is injected across the vertical length of the contaminated saturated zone
 - Include the smear zone
- When treating soil, spacing must be closer and water should be added
 - Water is the transport medium

A key to success...

CHEMICAL OXIDATION REDEFINED...

Part A: Sodium Percarbonate

Part B: Catalyst and Silica

ORC A D V A N C E D[™]

- ORC releases oxygen in the subsurface over a period of a year
- Oxygen is used by microorganisms in the aerobic degradation of compounds
- ORC can treat TPH, BTEX, DCE, and VC

- ORC comes in pails as a white powder
- ORC can be applied to the subsurface:
 - By injection
 - Using ORC socks (left)
 - Application in trenches or excavation backfill

Controlled Release Technology (CRT)

Unintercalated peryxogen is subject to "oxygen lock-up"

This unique process separates ORC from commodity magnesium and calcium peroxides in form and function!

- Chemical Oxidation
- Concentration in ppm
- Reaction times weeks to month

- Biological Oxidation
- Concentration in ppb
- Reaction times months to year

Combined Remedies: Chem to Bio (Oxidation)

- Chemical Oxidation
 - Establishes high ORP
 - Results in high dissolved O₂
 - Colorless, non-toxic, mineral-like residuals (RegenOx™)
- Aerobic Bioremediation
 - Biological Oxidation process
 - Enhanced by adding O₂
 - ORC-A can be co-applied directly after or with RegenOx™

Coupling of the two oxidations is seamless

RegenOx does not inhibit microbial growth

Typical Application

Direct Push

For RegenOx

- 10-20 lbs/ft.
- 20-60 gal./ft.
- 5-10 ft. Spacing

For ORC/ORC-A

- 4-10 lbs./ft.
- 1-3 gal./ft.
- 10-30 ft. Spacing

Mix the RegenOx Part A into water until it dissolves into a milky liquid

Add Part A and Part B together to form a slurry

Mix the two parts thoroughly

Mix the ORC-A into the RegenOx

Site 1: Manufacturing Facility

- BTEX Contamination, 46 ppm
- Excavation Treatment
- Source/Plume Treatment

• Treatment area: 9,800 ft² x 12 ft

Depth to GW: 5-7 ft

Soil Type: Sand

• GW Velocity: 0.33 ft/d

Remediation Approach

- Solution: RegenOx & ORC Advanced
- Application Type:
 - RegenOx: Direct Push Injection
 - ORC Advanced: Direct Push and Excavation Backfill
- Quantity Applied:
 - RegenOx: 12,480 lbs
 - ORC Advanced: 6,350 lbs

Treatment Area:

- ORC-Advanced in the plume: 9,800 ft²
- ORC Advanced in excavation pit: 2,200 ft²
- RegenOx + ORC-Advanced in the Source: 1000 ft²

Contaminant Concentrations

Well MW-1 Pre-treatment Concentrations			
Contaminant	Concentration		
Benzene	2.62 μg/L		
Toluene	21,400 μg/L		
Ethylbenzene	4,200 μg/L		
Xylenes	20,500 μg/L		

Total BTEX = 46 ppm

Application

- After Excavation, 950 lbs ORC-Advanced applied to pit
- RegenOx applied in source area (downgradient edge of pit)
- 6 RegenOx Applications, through November 2006
- 6th injection: RegenOx + ORC-Advanced in source area
- ORC-Advanced injected across entire plume

Results: January, 2007

MW-1 Results (ppb)					
Contaminant	Initial Concentration	Post Concentration	Reduction		
Benzene	3	BQL	-		
Toluene	21,400	BQL	>98 %	1700	
Ethylbenzene	4,200	730	82%	320	
Xylenes	20,500	2,000	90%	630	

Goals

Source Area

Results: January, 2007

MW-2 Results (ppb)				
Contaminant	Initial Concentration	Post Concentration	Reduction	
Benzene	BQL	BQL	-	
Toluene	BQL	BQL	-	
Ethylbenzene	672	364	46%	
Xylenes	2,570	91	96%	

1700 320 Goals 630

Plume Area

Summary

- Combined RegenOx/ORC-Advanced application
- 2 months into bioremediation phase, BTEX levels at or near goals in all wells.
- In hottest well, total BTEX from 46 ppm to 2.7 ppm
- GW concentrations indicate that contaminant mass reduced significantly

Site 2: LUST Site in Alabama

Site Characteristics

- Service Station in Central Alabama
- Tanks excavated years before RegenOx and ORC-A injections
- Shallow silt overlying silty sand
- Depth to water 5 ft bgs
- Treatment thickness 12 feet (5-17 ft bgs)

Contaminant	Baseline (MW-2)	Baseline (MW-3)
Total BTEX	17.5 mg/L	0.220 mg/L

Remediation Approach

Direct-push injection

Product	Vertical Thickness	Inj. Pts	Spacing
RegenOx	12 ft	28	8 x 8 ft
ORC Advanced	12 ft	20	8 x 10 ft

- Product Amounts
 - RegenOx 4,650 lbs
 - ORC Advanced 1,200 lbs
- Product Cost
 - RegenOx \$9,068
 - ORC Advanced \$10,500

Remediation Timeline

	RegenOx	ORC Advanced
January '06	1350 lbs	
Feb '06	1630 lbs	600 lbs
October '06	1680 lbs	
November '06		600 lbs

Ground Water Results

MW-2

	Baseline	3/2006	6/2006	11/2006
BTEX	17.5 mg/L	10.90 mg/L	0.973 mg/L	0.588 mg/L

MW-3

	Baseline	3/2006	6/2006	11/2006
BTEX	0.220 mg/L	0.128 mg/L	0.242 mg/L	0.042 mg/L

Contaminant	Pre-Treatment Concentration (ppm)	Post-Treatment Concentration (ppm)	Cleanup Goal	Percent Reduction
Benzene	2.4	0.001	0.99	99%
BTEX	17.5	0.004	NA	99%

Conclusions

- Clean-up goals reached within 6-months
- BTEX level maintained for 1 ½ years
- Closure was granted and the property has been redeveloped

Conclusions

- Chemical oxidation (RegenOx) is good at reducing mass quickly and effectively
- Bioremediation (ORC) is a good polishing step
- The combination of these two technologies is an effective, low-cost solution for treating aerobically degradable compounds