

In-Situ Groundwater Nitrification and De-Nitrification Remediation Processes

CREATING AND DELIVERING BETTER SOLUTIONS

Presented by Steve Mailath, EBA Engineering Consultants Ltd.

Phone: 403.723.6898

Problems with Ammonia and Nitrate

- Over fertilization (eutrophication) of surface waters with N
- Ammonia toxic to animal species
 - fish and invertebrates
- Nitrate contamination of drinking water
 - blue baby syndrome methemoglobinemia
- Discounted value of brown-field development

Environmental and Regulatory Issues

- Environmental regulations are becoming more stringent with time
 - Environmental enforcement orders
- Growing public concern of environmental management
- Restricted land use

Where is the Problem – Who is responsible

- Fertilizer manufacturing and storage facilities
 - Brown-field developer
- Sewage treatment facilities
 - City of Calgary
- Agricultural areas
 - Farmers
- Airports
 - Calgary airport authority

Problems with Existing Solutions

- Expense
 - Treatment facilities
 - Piping
 - Operating
- Large footprint, need to close site

In-Situ Groundwater Nitrification and De-Nitrification Remediation Processes

In-situ nitrification:

- Extracting groundwater
- Adding oxygen and nutrients
- Injection of amended groundwater

In-situ de-nitrification

- Extracting groundwater
- Adding carbon and nutrients
- Injection of amended groundwater

By: Steve Mailath, EBA Engineering Consultants Ltd.

Patent Pending: David Reese, University Technologies International, Phone: 270.2434

Dr. Angus Chu, U of C, Phone: 220.8987 Steve Mailath, EBA, Phone: 723.6898

- Performs as well as best in class solutions at less than half the cost
- Full mass removal nitrates reduced to N gas
- Small footprint and less intrusive than most solutions
- Requires fewer wells and piping
- Year round treatment
- Free bio-reactor (in situ)

Options

Options	Main Limitations	Capital (\$ Million)	Operatin g (\$/year)	Present Value Cost ¹ (\$ million)
1. Groundwater Extraction and Irrigation	Summer treatment	\$0.85	\$57,000	\$1.4
2. Groundwater Extraction and Discharge to City Sanitary Sewer	Removal of ammonia only	\$0.69	\$50,000	\$1.2
3. Groundwater Extraction and Electrochemical Treatment	High cost	\$3.1	\$155,000	\$4.7
4. Groundwater Extraction and Biological Treatment (Nitrification)	High cost	\$1.6	\$100,000	\$2.6
5. Groundwater Extraction and Wetlands Disposal	Summer treatment, low N	\$0.64	\$51,000	\$1.2
6. In-Situ Electrochemical Treatment	Low perm soils	\$2.8	>\$35,000	>\$3.0
7. On-Site Ex-Situ Biological Treatment	High cost	\$5.0 to \$7.0	>\$35,000	>\$5.0
8. In-Situ Nitrification and	High perm soils	\$0.2	\$30,000	\$0.5
De-Nitrification	DELIVERING RETTER	\$0.1	\$25,600	\$0.4

¹ Present value based upon 15 year life and 5% rate of return.

www.eba.ca

Cross-Section D-D'

Hydraulic Parameters

•	Section	length
---	---------	--------

- Section thickness
- Hydraulic conductivity
- Hydraulic gradient
- Groundwater velocity
- Groundwater flux
- Ammonia concentration
- Nitrate concentration

425 m (perpendicular to flow

 $3.0 \, \mathrm{m}$

49 m/day

0.0023

 $0.3 - 0.5 \, \text{m/day}$

144 m³/day (22 igpm)

63.2 mg-N/L

94 mg-N/L (i.e., 31 mg-N/L

in-situ plus 63 mg-N/L generated

by nitrification)

Amendment Addition

www.eba.ca

GAS LIQUID REACTOR

OXYGEN DELIVERY

NUTRIENT DELIVERY

66 – 89 % AMMONIA REDUCTION

NO OXYGEN DELIVERY

NUTRIENT DELIVERY

De-Nitrification Results

78 - 99 % NITRATE REDUCTION

Options

Options	Main Limitations	Capital (\$ Million)	Operating (\$/year)	Present Value Cost ¹ (\$ million)
1. Groundwater Extraction and Irrigation	Summer treatment	\$0.85	\$57,000	\$1.4
2. Groundwater Extraction and Discharge to City Sanitary Sewer	Removal of ammonia only	\$0.69	\$50,000	\$1.2
3. Groundwater Extraction and Electrochemical Treatment	High cost	\$3.1	\$155,000	\$4.7
4. Groundwater Extraction and Biological Treatment (Nitrification)	High cost	\$1.6	\$100,000	\$2.6
5. Groundwater Extraction and Wetlands Disposal	Summer treatment, low N	\$0.64	\$51,000	\$1.2
6. In-Situ Electrochemical Treatment	Low perm soils	\$2.8	>\$35,000	>\$3.0
7. On-Site Ex-Situ Biological Treatment	High cost	\$5.0 to \$7.0	>\$35,000	>\$5.0
8. In-Situ Nitrification and	High perm soils	\$0.2	\$30,000	\$0.5
De-Nitrification		\$0.1	\$25,600	\$0.4

¹ Present value based upon 15 year life and 5% rate of return.

In-Situ Groundwater Nitrification and De-Nitrification Remediation Processes

By: Steve Mailath, EBA Engineering Consultants Ltd.

Patent Pending: David Reese, University Technologies International,

Phone: 270.2434

Dr. Angus Chu, U of C, Phone: 220.8987

Steve Mailath, EBA, Phone: 723.6898

QUESTIONS

CREATING AND DELIVERING BETTER SOLUTIONS

EBA Engineering Consultants Ltd.