Hydrogeologic assessment in support of the development of the Peace River Oil Sands

a case study concerning a pilot-scale in-situ SAGD operation

William Wilmot, Matrix Solutions Inc.

Objective

- Create a preliminary hydrogeological characterization in an area where there is limited hydrogeological data
- Use this characterization to identify potential source and disposal aquifers to test for SAGD development

Oil Sands

Steam Assisted Gravity Drainage (SAGD)

SAGD Water Demand (SAGD Alley)

- Make-up dependent on RR, process efficiency, upgrading, ZLD, etc...
- ➤ SAGD produces wastewater ≈ make-up water demand
- Need to test and secure aquifers

Criteria for Selecting Aquifers to Test

Salinity

- ➤ Disposal (>4,000 mg/L <u>Total Dissolved Solids</u>)
- >Source (4,000 mg/L < TDS <10,000 mg/L)

Productivity

- ➤ Aquifer extent/thickness
- ➤ Aquifer permeability
- ➤ Acceptable pressure change

Responsible Use

- ➤ Conflicts with other groundwater users
- ➤ Potential environmental impacts

Oil Sands

Athabasca Oil Sands (SAGD Alley)

- 13 SAGD projects
 - 800,000 bpd bitumen
 - 70,000 m³/d water
- >900 chemistry samples
- >16,500 industry wells
- >60 pumping tests
- >1,650 DSTs
- EIAs and regional reports
 - Industry wells
 - Industry wells (DST)
- SAGD Project

30 km

Peace River Oil Sands

- ✓ 143 industry wells
- √ 68 not cased
- ✓ 2 DSTs
- √ 3 chemistry samples
- √ 8 core
- √ 0 pumping tests
- √ 0 SAGD operators
- ✓ Regional geology reports

The Issue

Drilling and testing deep aquifers is expensive!

 How do we identify these target aquifers with limited data?

Hydrostratigraphic Column

Geologic Subcrop Map

Peace River Oil Sands

Smoky Aquitard

Dunvegan Aquifer

Shaftesbury Aquitard

Paddy/Cadotte Aquifer

Spirit River Aquitard

30 km

Petrophysical Type Log Bluesky Aquifer

Petrophysical Type Log Paddy/Cadotte Aquifer

Aquifer Salinity Methodology

- Only 3 chemistry samples (Bluesky)
- 68 uncased well logs with deep resistivity measurements
- These resistivity measurements can provide estimate of salinity

[Equation 1 - calculate resistivity of the brine (Archie, 1959)] $R_t = a\phi^{-m}S_w^{-n}R_w$

$$R_t = a\phi^{-m}S_w^{-n}R_w$$

Where:

Porosity

Resistivity of the fluid saturated rock (deep resistivity from logs)

 R_w S_w Resistivity of the brine (Aquifer)

Brine saturation (1)

Cementation exponent of the rock (usually in the range 1.8–2.0) m

Saturation exponent (usually close to 2) n

Constant (1) \boldsymbol{a}

[Equation 2 – calculate TDS (Rakhit, 1997)]

$$R_{w} = TDS^{-0.854387} \times 4.51686$$

Aquifer Salinity Estimate

Will Productivity be Sufficient?

- Productivity is constrained by 3 parameters
 - > Aquifer extent/thickness
 - > Aquifer permeability
 - >Acceptable pressure change

Aquifer Productivity Methodology

- Aquifer extent/thickness
 - Map aquifers using 143 well logs
- Aquifer permeability
 - No pumping tests, therefore, estimate permeability of both aquifers referencing 8 Bluesky cores analysis
- Acceptable pressure change
 - Only 2 Bluesky DSTs to estimate aquifer pressure in both aquifers

Aquifer Permeability Estimate

Bluesky

- Core analysis (4 to 10 D)
- Gamma <45 API, Porosity >30%
- Very clean sand
- Paddy/Cadotte
 - Gamma <45 API, Porosity >30%
 - Very clean sand
 - Assumption Paddy/Cadotte ≈ Bluesky
- Best Guess
 - Bluesky 5D and Paddy/Cadotte 2D
 - Conservative 1D (used for calculations)

Available Head Estimate

Conservative estimate for available head is 100 m and 200 m for the Paddy/Cadotte and Bluesky aquifers, respectively

Paddy/Cadotte Aquifer Productivity

Given;

- ➤ Aquifer thickness (b) ≈ 25 m
- \rightarrow Hydraulic conductivity (K) \approx 1x10⁻⁵m/s (1D)
- ➤ Available Head (AH) ≈ 100 m

[Equation 3 – calculate yield of well Farvolden (1959) Method]

$$Q_{20} = (0.68)(Kb)(AH)(0.7)$$

$$Q_{20} \approx 1,000 \text{ m}^3/\text{day}$$

Bluesky Aquifer Productivity

- We know the Bluesky Aquifer is permeable
- Acceptable pressure change is constrained by fracture pressure
- ERCB Directive 051 suggests a pressure head build-up of 800 m (8,000 kPa) is acceptable in this aquifer

Responsible Use of Aquifers?

- Both aquifers are deep and saline
- Very thick aquitards mitigate vertical pressure propagation
- No other users of aquifers in area (no conflicts)
- Using Theis (1935) we can estimate drawdown at Paddy/Cadotte subcrop

[Equations 4 and 5 - calculate drawdown Theis (1935)]

$$dd = \frac{Q}{4\pi Kb}W(u)$$

$$u = \left\{\frac{r^2Ssb}{4Kbt}\right\}$$

$$u = \left\{ \frac{r^2 Ssb}{4Kbt} \right\}$$

Where:

dd	drawdown (m)	b	aquifer thickness (25 m)
W	well function	r	radius (40 km)
Q	pumping rate (1,000 m ³ /day)	Ss	specific storage (1x10 ⁻⁶ m ⁻¹)
K	conductivity (0.9 m/day)	t	time (5 years)

Negligible (<1 mm) drawdown at Paddy/Cadotte Aquifer subcrop

Conclusion

Absence of traditional hydrogeological data

Industry data

- Petrophysical logs
- Core samples
- Drill stem tests

+

Conceptual understanding of hydrogeological system

=

Recommendation for SAGD project

- Testing the Bluesky as a wastewater disposal aquifer
- Testing the Paddy/Cadotte as a source aquifer

