

Presentation Outline

- Why Treatment Wetlands?
- Treatment Processes
- Types of Wetlands
- Costs
- Case Study Examples

Treatment wetlands?

- Why wetlands?
 - Sustainable
 - Functional
 - Cost effective compared to alternatives
 - Aesthetic/recreational value
- Wetland questions?
 - Can they treat contaminants of concern?
 - Do they work in cold climates?
 - Can wetlands meet the needs of the site?

Wetlands Treat Industrial Wastewaters

FINAL REPORT

- Petroleum
 - refineries, pumping stations, storage facilities
 - groundwater impacts
- Landfill Leachates
- Oil Sands Tailings
- Pulp & Paper Wastewaters
- Acid Mine Drainage
- Site Domestic Wastewater
- Site Stormwater

The Use of Treatment Wetlands for Petroleum Industry Effluents

Prepared for:
American Petroleum Institute
Biomonitoring Task Force
Health and Environmental
Sciences Department
1220 L Street, Northwest
Washington, DC 20005

Project No. 131007.A0.ZZ

June 19

Principal authors: Robert L. Knight Robert H. Kadlec Harry M. Ohlendorf

Wetlands for Remediation

- Petroleum hydrocarbons
- PAHs
- VOCs
- Heavy metals
- PCBs
- Naphthenic acids
- Nitro bodies (TNT, DNT)
- Acid mine drainage
- Ethylene glycol
- TSS, N species, P, SO₄, BOD₅, COD

Photo David Dodge, Pembina Institute

Wetland Processes

Wetlands for Remediation

- Pretreatment
- Retention time for degradation function of complexity
- First-order models generally apply for key constituents
- Microbial Degradation Pathways
 - Hydrolysis
 - De-alkalization
 - Ring cleavage (aromatics)
 - Removal of halo, nitro, acid, thio groups
- Byproducts
 - Oxidation = $CO_2 + H_2O$
 - Reduction = CH₄ & H₂S

Redox Potential Manipulation

Aerobic (O₂)

Nitrate Reduction (denitrification)

Mn Reduction

Fe Reduction

SO₄ Reduction

Methanogenesis

Range in redox – ideal for chemical transformations!

Depth

Adapted from Craft, 2001

Surface Flow Wetland Degradation Profile

Mature Plants

Water

Dead Plant Litter

Organic Sediments and Roots

Mineral Soils

Aerobic

Mildly Anaerobic (positive E_h)

Strongly Anaerobic (negative E_h)

Treatment Wetlands for Recalcitrant Compounds

Natural Wetlands

Surface Flow (SF)
Constructed Wetland

Subsurface Flow (SSF)
Constructed Wetland

Remediation of "Waters"

- Surface Water
 - Holding ponds, lakes, water courses, stormwater
- Process Effluents
 - Industrial, municipal, residential discharges
- Groundwater
 - Unique due to method of groundwater recovery
 - Requires hydraulic isolation from "clean" surface water and/or groundwater
 - Wetland design key for reduction of water collection/transport costs
 - Some application of wetlands installed directly into groundwater for interception and treatment of impacts

Addressing Multiple Contaminants Staged or Component Systems

- Hybrid systems
 - Pre-treatment + subsurface flow + surface flow
 - Irrigation of partially treated effluents.
- "Engineered systems"
 - SSF may be augmented by aeration or utilizing specific reactive media
 - phosphorous iron slag
 - pH organic wastes (compost, sawdust, etc.)
 - vertical flow (up or downward)
- Impacted water treatment + managing stormwater and flood flows

Treatment Sequencing

Sequential anaerobic-aerobic

 Purpose – to treat chlorinated and non-chlorinated organic compounds in sequence

Combination with other natural treatment systems

Winter Operations

Surface flow

- Manage water level to create air/snow/ice insulating layer
- Deep zone water surface may freeze or remain open
- Treatment efficiencies reduced but treatment continues
- Sub-surface flow
 - Water depth affects root zone processes
 - Normal range 30 60 cm
 - Can be 90 cm to allow winter lowering
 - Insulation with mulch, straw mats, snow
 - Microbial metabolism generates heat

O&M Requirements

- Water Quality
 - Monitoring
 - Constituent Loading
- Hydraulic Operation
 - Water Level and Flow Control
 - Flow Path Rotation
- Vegetation Management
 - Herbivory Management
 - Replacement

Wetland Size/Cost Ranges

Kodiak Landfill

Wetland Area

- SF: 0.03 to 10,000 ha

- SSF: 0.005 to 20 ha

Flow

- SF: 1 to 5M m³/d

- SSF: 0.5 to 10,000 m³/d

System Cost

- Surface Flow
 - Avg \$100,000/ha
- Subsurface Flow
 - Avg \$350,000/ha
- Economies of scale

Capital Cost Comparison - Groundwater

- Options
 - MNA, In-situ, pump and treat, deep well injection
- Pump & Treat
 - Treatment Wetland vs. Mechanical Pump & Treat
 - Large range of TW cost depending on feedstock
 - TW vs. MP&T
 - Capital costs somewhat comparable
 - TWs 10 20 % lower

VS

Operation & Maintenance Costs

- Mechanical pump and treat = \$5/m³ (EPA 542-R-00-013)
 - Whole system O&M cost
- Surface flow wetland = \$0.05/m³ (IWA, 2000)
 - Additional considerations for contaminated sites
 - Extraction infrastructure O&M not included (if groundwater)
 - Pretreatment
 - Lab
 - Increased O&M for subsurface flow systems
 - media maintenance (replacement?)
- Bottom Line
 - Apples and Oranges?
 - Maybe but the discrepancy here is too large to ignore
 - If surface water or industrial effluent Granny Smith & Macintosh!
 - TWs, when appropriate, tend to be more cost effective
 - Provide ancillary benefits

Natural Systems

Conventional Systems

Case Studies

Elmendorf AFB, Anchorage, Alaska

- Infiltration of contamination
- Groundwater from multiple seeps is collected and pumped to the wetland treatment system
- Two stage system
- Additional uncontrolled/unmeasured seeps flowing direct to wetland

- Overland flow cell: inclined concrete pad, liner, gravel. Volatilization & oxygenation.
- Surface flow wetland: average 8 day residence time
- Effectively removes PAHs and BTEX

Elmendorf AFB, Anchorage, Alaska

Parameter	Influent*/ Mid-system** (µg/L)	Effluent (µg/L)	Removal Efficiency
Benzene	0.0025**	Non-detect	100%
TCE	14**	2.3	84%
Total Aromatic Hydrocarbons	0.822*	0.832	- 1%
Total Aqueous Hydrocarbons	1.003*	1.031	- 3%

^{*} Maximum influent concentrations from 1998 to 2006

^{**} Maximum mid-system concentration from 1998 to 2006

Shepard Landfill Stormwater Wetland - Calgary, AB

Douglas Road Landfill, IN

- Former gravel borrow pit used for disposal of residential, industrial and 1,200 m³ hazardous waste. Closed to avoid RCRA compliance.
- Groundwater contaminant plume extending 3800 feet from site, affecting private residences and businesses with VOCs and metals exceeding GLs.
- 5 extraction wells to contain and extract groundwater
- Discharge to infiltration basin and storm sewer if necessary

Douglas Road Landfill, IN

Parameter	Influent (µg/L)	Effluent (µg/L)	Removal Efficiency
TCE	6.3*	Non-detect	100%
Arsenic	5.5*	Non-detect	100%
Lead	1.0*	0.5	50%
1,1-Dichloroethane	0.6*	0.1	84%

^{*} Maximum influent results from 2000 to 2006

Kodiak Landfill, Alaska

- Impacted Leachate
 - VOCs and metals
- Gravity perimeter drain collection
- HRTs from 6 to 30 days
- Three stage treatment process:
 - "Trickling Filter"
 - 2. Constructed SSF wetland cells
 - 3. Natural wetlands
 polishing large natural
 wetland buffer
 downstream

Kodiak Landfill, Alaska

Parameter	Influent (mg/L)	Effluent (mg/L)	Removal Efficiency
TDS	940	780	17%
COD	86	52	40%
NH ₄	110	70	36%
Iron	29.8	0.27	99%
Manganese	4.5	2.5	44%
Benzene	0.001	Non Detect	100%
2-Butanone (MEK)	0.044	Non Detect	100%

Chevron Refinery - Richmond, CA

- Used for polishing all wastewater
- 36 ha, treating 9500 m³/d
- Removals:
 - NH₄-N: 76%
 - NO₃-N: 69%
 - BOD: 51% (low in influent)
 - TSS: 45% (low in influent)
 - Zn, Cr, Se removal
- Extensive ecological studies show net benefits of wetland system

Acid Mine Drainage

- Coal Storage Facility Savannah River Site, Aiken, SC
- Pilot scale research vertical flow wetland used to treat low pH ferric irondominated acid rock drainage
- Data for multiple treatments

Parameter	Influent (mg/L)	Effluent (μg/L)	Removal Efficiency
рН	1.6 - 3.0	5.5 - 7.1	NA
Total Iron	92 - 237	ND - 123	~ 90%
Aluminum	39 - 274	0 - 9.3	> 99%
Sulphate	926 - 3385	490 - 2732	~ 50%

Other Applications PCBs, PAHs & Heavy Metals

In-situ soil/ex-situ groundwater remediation using groundwater collection + nutrification + SSF wetland + reinjection = Closed loop

Other Applications Continued ... Oil Sands Tailings Remediation

- Current closure planning uses wet-cap method
 - Aerobic degradation of ejected naphthenic acids
 - Likely issues with design, depth and turbidity resulting in anaerobic environment
- Combination of wet-cap method, passive treatment (wetland) and mechanical treatment systems
 - Phase-out of mechanical component
 - Leave wetland in place following closure

