

Outline

- Background
- Problem Statement
- Flow and Transport Mechanism in Wetlands
- Case Study Options Analysis

Northern Alberta

Challenges

- Key infrastructure crossing environmentally sensitive areas
- Remote settings, connected waters
- High sensitivity to water balance and salinity
- Complex flow and transport processes
- Minimal disturbance remedial approaches are preferred
- Long term management of sites may be required

Wetlands Evolution

Stage 1: Receding glaciers

Stage 2: Shallow Glacial Lake

Stage 3: Colonization by vegetation

Stage 4: Cold and oxygen poor conditions, slow degradation, peat formation

Stage 5: Nutrient poor conditions, slow growth and accumulation; layered structure

Peat Properties

- Exponential decrease in saturated hydraulic conductivity (K) with depth
- High degree of anisotropy and heterogeneity
- Pools of peat deposits deposition history
- Integrated surface water groundwater problem

Peat Properties

Hoag, R.S., Price, J.S. (1995). J. of Hydrol. Beckwith, C.W. et al. (2003a). Hydrol. Process. Quinton, W.L. et al. (2008). Hydrol. Process. Nagare, R.M. et al. (2013). Hydrogeology J.

Typical Cross Section

TYPICAL CROSS SECTION

ORGANIC SOIL MINERAL SOIL

Source: WorleyParsons Canada Services Ltd.

Contaminant Transport

- Mechanism dominated by K-Depth profile
- Advection vs. diffusion at different depths
- Closed pores, backward diffusion, fibre absorption, deep pools unique processes to peat

Multidisciplinary Problem

Multidisciplinary Problem

Case Study Background

Objectives

Two broad objectives:

- 1) Spill conceptual model development
- 2) Remediation strategy development

Conceptual Model Development

Conceptual Model

- Spill of produced water
- Initial mode of water transport dominantly overland
- Vertical movement into low K zone
- Accumulation into thicker peat zones
- ▶ Very little movement between 2007 and 2013

Remediation Options Analysis

Remediation Options – Peat Area Criteria

Remediation Options – Clay Area Criteria

Remediation Options – Peat Area

Peat Area Options – Dewatering Trenches

Peat Area Options – Excavation and Dewatering

Peat Area Options – Treatment and Dilution

Dewatering Trenches

Infiltration Trenches

Chosen Option – Peat Area

Peat Bog Extent

Slough

--- Chloride Concentration at 2013 end

Active Trenches

Additional Trenches

Remediation Options – Clay Area

Active Trenches

Additional Trenches

Clay Excavation/Tile
Drain Area

Clay Barrier

- 3 m excavation with backfill
- 1.5 m excavation with backfill
 - 2 m excavation, backfill and tile drains
- 2 m excavation with backfill, clay barrier and tile drains

Tile Drains and Peat Dewatering Impacts

Remediation System Design

Conclusions

- Multidisciplinary problem needs multidisciplinary approach
- Conceptual model must adhere to wetlands evolution history
- Deterministic model an informative tool
- Integrated management approach
- Long term monitoring and optimization key to success

Questions

Ranjeet Nagare, PhD
WorleyParsons Canada Services Ltd.
ranjeet.nagare@worleyparsons.com

Phone: +1 780-496-9055